Posts Tagged ‘PPGIS’

Ushahidi: I couldn’t help it

Friday, March 23rd, 2012

I really enjoyed reading Haklay and Tobon’s (2003) article on PPGIS because it examines concepts that I can relate with my term project. The authors believe in information contributed by non-expert users in a constraint free environment; away from the office, possibly work, in your own personal space, or on the go. A decade after this article was written, mobile phones, especially smartphone apps, allow a user to both contribute and interact with non-expert generated information. I believe an ultimate PPGIS synergy has been created by linking FOSS together, in particular Ushahidi and OpenStreetMap, to represent geographic data contributed by non-expert users; on an online platform where you can text, email or Tweet information that you can then view interactively, on an OpenStreetMap interface.

User-centered design, development and deployment, and geovisualization are all critical components to a successful, efficient and usable platform. From the end-user perspective, these are all achieved. However, feelings may be mixed for developers. It is one thing to be able to send a text, Tweet, or email to a platform and interact with it, and another to use it as a template, activate, and maintain that platform. As much as these platforms are user-friendly, when will they become developer friendly? By developer I don’t mean a computer programmer, or a developer that is comfortable with coding, but someone who is new to it all but wants to learn; the non-expert of developers. Given all of this, I wonder what the authors would say of Ushahidi now. I believe in a constant need for improvement of open-source platforms, to strengthen the world of PPGIS. As difficult as the building process of the Ushahidi template can be for a newbie developer, I am astounded by the impact it has had and continues to have on the world of non-expert users.

-henry miller


Can’t we all just get along?

Thursday, March 22nd, 2012

A user-centred design of human-computer interfaces, what a thought!  As someone who has gotten to grow up with the best of computers (so far), but still remembers the clunky old Macintosh that was considered ahead of the rest, I definitely see the value in a smooth, practical, and functional design.  So after reading this article by Haklay and Tobon, I was left with two thoughts.

One, to what extent should design conform to the needs of the people, and to what lengths should people go to meet the design?  The idea of incorporating usability and HCI techniques into public participatory GIS (PPGIS) is, in my opinion, a good one, and can create this middle ground.  People can learn new skills, allowing them to become more familiar with potentially less than intuitive softwares (ArcGIS, anyone?) and simultaneous research can restructure software to be as functional and also usable as possible.

Additionally, it made me think of the students in this class who are going through ethics approval, and trying to get people to participate in GIS-related studies.  This article mentions three workshops, which were integrated into a context larger than just furthering GIS as a field, which seemingly drew more participants.  But for people like the students in this class, who require volunteers to simply further their own (and eventually our) understanding of GIS techniques, participants are less than willing.  So while the research aspect usability of PPGIS is an honourable pursuit, I wonder how realistic it would be if the user is not someone who is involved in a particular group, like the involved citizens in Wandsworth, but rather an everyday user of a website or phone app.

I enjoy their statement at the end, though, that points out that “ease of use and user friendliness are characteristics of software that are more elusive than they first seem to be”.  Isn’t that the truth!


Communication in PPGIS

Thursday, March 22nd, 2012

Public participation in GIS is a tricky thing. How do we find the balance between user friendliness and functionality. Today I participated in Peck’s HIC survey and discovered a few things with Google maps. When I first started using Google maps, many of the functions appeared on the map itself. Things like measuring tools and selecting different types of labels. Since then, it appears as though many of these options have been hidden away, only accessible after you enable them. On one side of the coin, I appreciate what Google is trying to do. They’re trying to streamline the system in order to target their system towards the general public. In doing this however, they may lose the clients looking for a more personalized. I will argue, however, that for those looking for a more specialized tool, there are better options such arcMap etc. So much of the programming is now built into Google.

A new type of PPGIS has emerged in recent years. Oddran Uran (2003) writes that it involves users and smart boards and GIS. Instead of have a mouse and keyboard interface, the new PPGIS uses a smart board to help the community in public consultation better communicate their ideas with planners. One of decision support systems’ goals is to increase the quality of communication between the community and planners. This innovative interface seems to have really helped the communication between specialized users and amateur gis users.

New technology seems to be appearing everyday to aid in the communication between specialists and casual users. This is just one example of how the gap is being bridged.


can geospatial technologies benefit the poor?

Sunday, February 14th, 2010

From student, AK, Intro GIS, taken from GIS, GPS, and Remote Sensing by Uwe Deichmann and Stanley Wood

The role of information and communication technologies in assisting rural development is drawing increasing attention. It promises to help isolated and disenfranchised communities transform themselves into development participants who are better informed and integrated.

GIS provides tools for visualizing, integrating, and analyzing spatial data and a unique capacity to merge information from many sources. By using a common spatial framework, GIS enables users to analyze how physical, social, and economic factors interact. Constraints to widespread use of GIS have been its high cost and complexity and the difficulty of obtaining geographically referenced (geo-referenced) data. However, as the technology has become cheaper and less complex, it has become more accessible to non-specialists.

GPS and remote-sensing techniques have reduced the problem of obtaining geo-referenced information. For instance, most field surveys now use GPS to capture the location of sample points, such as plots or households, enabling easy visualization of survey results and integration with other geographic data. GPS receivers range from the handheld models that are inexpensive, easy to use, and provide coordinate accuracy of about 10 meters to differential receivers that yield accuracy in centimeters. Great advances also have been made in remote sensing and aerial photography. Image processing techniques generate digital maps from aerial photos or satellite data that combine the accuracy of a topographic map with the richer contextual information of a photograph.

Until recently, geospatial technologies have benefited the rural poor mostly indirectly, by generating improved information for research, policy analysis, planning, and monitoring. Precision farming techniques are used in high-intensity commercial agriculture, where detailed location information determines, for example, the level of fertilizer applied to each portion of a field. However, the capital, maintenance, and training requirements are well beyond the means of most farmers in developing countries, particularly smallholders whose small field sizes make these technologies uneconomic.

One of the most direct applications of GIS in developing countries is participatory mapping, where, for example, specialists interact with farming communities to create spatial inventories of natural resources, property status, land-use rights, and perceived problems. Such inventories feed into a consultative process aimed at building consensus on more equitable and sustainable resource-management arrangements. Community mapping can also help foster the process of transferring greater decision-making power and fiscal responsibility to local levels of government. GIS is increasingly being used widely in parcel mapping. Without proper land registration, it can be argued that formal land markets are less efficient and the incentives to invest in land conservation might be limited.

Questions can arise about the political economy and sustainability of GIS approaches applied at the community level, and research on those issues has given rise to a literature on Public Participation GIS (PPGIS). Research primarily addresses concerns about GIS as an invasive technology that benefits a few elites and institutions while marginalizing the very people it’s supposed to help. While this work has often focused on developed-country experiences, its concerns are even more pertinent to poor communities in developing countries. PPGIS issues include:

  • Changes in local politics and power relationships resulting from the use of GIS in geospatial decision-making.
  • The effects of differential access to GIS hardware, software, data, and expertise
  • The educational, social, political, and economic reasons for lack of access and exemplary ways in which communities have overcome these barriers
  • The ways in which socially differentiated communities and their local knowledge might best be represented within GIS
  • GIS as local surveillance
  • Identifying public data policies that positively or negatively influence small-scale local businesses.

Geographic information technologies will continue to provide considerable indirect benefits through better-informed policymaking, research, planning, and development support by both government and non-government agents. But we need to continually reexamine the direct benefits.

Take for example, the “2020 Vision for Food, Agriculture, and the Environment“. This is an initiative of the International Food Policy Research Institute (IFPRI) to develop a shared vision and a consensus for action on how to meet future world food needs while reducing poverty and protecting the environment. Through the 2020 Vision initiative, IFPRI is bringing together divergent schools of thought on these issues, generating research, and identifying recommendations. In an initiative such as this, GIS can be used extensively to identify and model any aspect that is spatially distributed, for example, mapping gender assets, tracking movement of food from rural to urban areas, conducting site selections of optimal farming locations by crop, modeling equitable water allocation, and possibly applying precision agriculture.

IFPRI promotes a vision for food access for the greatest good, that assists the poor while not irreparably hurting the environment. But who might get left out in a consensual “greatest good” vision? Women’s subsistence farming but not men’s cash crop farming? Women in these developing countries often have their own local knowledge about food production that differs from men. What if the communities themselves want to map and analyze: do they have the access to the satellite images and computers? Communities may have their own alternate or small scale means of producing food that varies from getting out food to the largest number of peoples. Technologies have been developed like Google Earth and have been used by indigenous people to monitor illegal activities on their land, for example logging. What happens after the experts leave? It’s these things that we need to reflect on when we promote GIS for rural development.

Peter A. K. Kyem, James Saku. 2009. Web-Based GIS and the Future of Participatory GIS Applications Within Local and Indigenous Communities. GISP Department of Geography Central Connecticut State University New Britain, USA. EJISDC Vol. 38.

Daniel Weiner, Trevor M. Harris. 2003. Community-Integrated GIS for Land Reform in South Africa. URISA Journal, Vol. 15.

Renee Sieber. 2006. Public Participation GIS: A Literature Review and Framework. Annals of the Association of American Geographers. Volume 96, Number 3 , pp. 491-507.