What are the most important accomplishments in GIScience over the past twenty years? Which technologies play pivot roles in the development of GIScience? What social effect has GIScience brought by its twenty years’ progress? And what are the challenges we facing in GIScience research nowadays? Goodchild shows the answers in his paper, with insightful opinions from a large number of scientists in this field. Starting from the coining of GIScience, Goodchild introduces the rapid growth of GIScience and its position in the large family of science. Research agenda of GIScience is delineated and the accomplishments are presented from research and institution perspective respectively. Challenges are classified as five groups and discussed with future research directions.
Technologies, especially computer and information technologies have stimulated the development of GIScience, such as Web 2.0, database systems, mobile technologies and so on. The advances of geosensing systems bring new approaches for data capture, which enable detailed earth observation data with improved spatiotemporal resolution. Moreover, geospatial ontology (Web 3.0) changes GeoWeb from a visualization tool to a platform for geospatial information exchange. Cloud computing builds large computing resource pool with virtualized hardware and software, to facilitate the share of geospatial information. Currently, geospatial information is collected, analyzed, visualized, and exchanged with unprecedented amount and speed. As Microsoft has indicates in the fourth paradigm research report (http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th_paradigm_book_complete_lr.pdf), Goodchild also points out the era of information-intensive research has arrived. The social impact of the fourth paradigm should also be studied as well as its educational challenges. All the research can extend the definition of GIScience and reformat its conceptual framework.
–cyberinfrastructure