Chaowei Yang et al. very ambitiously discuss the development of geospatial cyberinfrastructure, including some of the challenges confronting this process. One of the aspects I found most interesting was the potential for increasing amounts of error being introduced as more data are generated by an ever growing number of users. The facilitation of a system, which can “collect, archive, share, analyze, visualize, and simulate data, information, and knowledge” increases the accessibility of data to a much wider array of people. While this is beneficial in terms of promoting research, it also, however, allows for a great deal of uncertainty to be introduced as there are are no clear standards for communicating this inherent component of data. Users not familiar with this notion – who are likely also those increasingly gaining access to this infrastructure – may further this problem.
Since the quality of this data may be questionable, ClimateNYC equates the development of GCIs to black boxes, and I think this has severe implications for the future of GIS. Madskiier_JWong, conversely, argues that scientists have much to gain from being able to easily share data with people in other fields, but I would be cautious with this. I am not questioning the notion that sharing data facilitates the production of knowledge. I am, however, concerned that if error and uncertainty are significantly present and not well-communicated, it can lead to severe divides and unnecessary arguments within fields of study. We all know how easily maps and data can be manipulated, for example, to convince a viewer of a point of view, so perhaps issues such as communicating error need to be better addressed as cyberinfrastructures are developed. From this, perhaps data will not only by more freely available, but it will also be more reliable.
– jeremy