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Abstract 

Satellite image fusion is considered an advanced image processing method. It is used to combine 

information from two or more satellite images into a single image. It propounds more 

information and visual interpretation possibilities for future processing. Recently, satellite image 

fusion methods have been moved from generic to advanced methods that applied statistical or 

mathematical frames to enhance both the spatial and the temporal resolutions at the same time. 

The focus of this paper is to review various recently developed spatio-temporal image fusion 

methods, such as spatio-temporal adaptive fusion methods; unmixing-based fusion methods; and 

sparse representation-based fusion methods, in order to comprehend the current developments 

and its implications.  

1. Introduction 

Earth observation satellites provide data of the Earth surface in the form of imagery at different 

spatial, temporal, and spectral resolutions (Jensen 2007). Usually, high spatial resolution data 

provide the spatial details of the Erath features, while high temporal resolution data detect the 

dynamic phenomena (Hilker et al., 2009). Generally, due to technical and cost issues, relatively 

high spatial resolution images are having low temporal resolution, and vice versa (Zhang 2004; 

Rocha et al. 2012; Weng et al., 2014). However, many environmental applications (e.g., 

agriculture, land cover disturbance monitoring, water management, etc.) require both high spatial 

and high temporal resolution images. Thus, a new area of research has been emerged called 

spatio-temporal data fusion. Basically, this approach employs statistical or mathematical 

frameworks to produce high spatial and high temporal satellite images by integrating images 

from different satellite systems that have similar spectral and orbital characteristics, but with 

different spatial and temporal resolutions. In this paper, our focus is to present a state of the art of 

recently developed satellite based spatio-temporal data fusion methods in order to comprehend 

the current developments and its implications.  

2. Satellite based spatial-temporal data fusion methods 

Spatio-temporal data fusion approach was introduced by Gao et al. (2006) in their effort to 

generate daily synthetic surface reflectance images at 30 m spatial resolution through the 

blending of the Landsat (having 30 m spatial resolution at 16 day intervals) and MODIS (having 



500 m resolution at daily time interval) surface reflectance images. Since then, several spatio-

temporal data fusion methods have been developed (Roy et al., 2008; Zhu et al., 2010; Zhang et 

al., 2013; Fu et al., 2013, Weng et al., 2014). These methods were introduced a combination of 

different satellite images, such as: (i) Landsat and MODIS (Gao et al., 2006; Zhu et al., 2010; Fu 

et al., 2013) (ii) Landsat and MERIS (Zurita-Milla et al., 2009); (iii) HJ-1 and MODIS (Meng et 

al., 2013); (iv) Landsat and GOES (Wu et al., 2013), and (v) ASTER and MODIS (Liu and 

Weng 2012). In general, the main idea of the spatio-temporal data fusion approach is to fuse low-

temporal/high-spatial resolution data with high-temporal/low-spatial resolution data. This 

method was applied to different environmental parameters and applications, with major emphasis 

in: (i) surface reflectance (Gao et al., 2006; Zhang 2013), (ii) normalized difference vegetation 

index (NDVI) (Meng et al., 2013), (iii) evapotranspiration (Anderson et al., 2010), (iv) urban 

heat island (Huang et al., 2013), (v) public health (Liu and Weng 2012), and (vi) surface 

temperature (Weng et al., 2014). These spatio-temporal data fusion methods could be broadly 

classified into three groups, (i) spatio-temporal adaptive fusion methods, (ii) unmixing-based 

spatio-temporal fusion methods, and (iii) sparse representation-based spatio-temporal fusion 

models; and would briefly be discussed in the following sub-sections. 

2.1 Spatio-temporal adaptive fusion methods 

These methods used mathematical functions, such as: summation, subtraction, multiplication, 

and rationing to perform data fusion technique. Gao et al. (2006) introduced the spatial and 

temporal adaptive reflectance fusion model (STARFM) for combining surface reflectance data 

from MODIS and Landsat images. STARFM was an empirical fusion method that utilized the 

spectral and orbital similarities between Landsat and MODIS, and combined them to produce 

synthetic Landsat images at the temporal resolution of MODIS (i.e., daily or 8-day scale). It 

consisted of three main steps as:  

i. selecting spectrally similar pixels (i.e., having similar reflectance) within a moving 

window of interest using Landsat images;  

ii. determining a weighting factor as a function of both Landsat and MODIS images; and  

iii. generating synthetic Landsat images at time two [synth-L(t2)] by multiplying the 

weighting factor with the sum of difference between two MODIS images taken at two 

different times [M(t2) – M(t1)] and Landsat image taken at time one [L(t1)].  

Though the STARFM method predicted reasonable synthetic Landsat images in comparison with 

reference Landsat images; there were three major limitations: (i) the window size was variable 

depending on the study area, and needed to be adjusted at each run; (ii) the existence of 

spectrally similar pixels within the moving window might not be always found; and (iii) it was 

not applicable over heterogeneous landscapes. In order to address the issue of heterogeneous 

land cover, Zhu et al. (2010) proposed the Enhanced STARFM (ESTARFM). In this case, they 

used two pairs of Landsat and MODIS images taken in two different dates such as (t1) and (t3) in 



order to predict synthetic Landsat image at an intermediate time (t2). The enhancement included 

the determination of a conversion coefficient for each spectrally similar pixel by performing 

linear regression analysis between Landsat and MODIS images [i.e., L(t1) with M(t1)] and [L(t3) 

with M(t3)] prior to generate the synthetic Landsat image. Although the method successfully 

predicted synthetic Landsat images, it was not only computationally expensive but also had the 

same problem of the moving window and the spectrally similar pixel issues like the original 

STARFM. To address the issue of selecting spectrally similar pixels, Fu et al. (2013) modified 

ESTARFM (mESTARFM). They applied two conditions to the candidate pixels, as: (i) the 

candidate pixels should be less than or equal to the standard deviation threshold of the moving 

window, and (ii) had the same land cover type as the central pixel in the moving window. This 

proposed method improved the accuracy of the predicted image in comparison to that of 

ESTARFM-produced synthetic images. Despite, it still had other problems such as, long 

computation time and the inapplicability for near real time applications. In another study, Meng 

et al. (2013) introduced the spatial and temporal adaptive vegetation index fusion model 

(STAVFM); where they improved the weighting function of STARFM by defining a time 

window according to the temporal variation of crops (in the event the method applied over 

agriculture-dominant land cover types). Although the method improved the predicted normalized 

difference vegetation index (NDVI) images; however, it failed to address other two major 

STARFM limitations. In other applications, researchers implemented STARFM in predicting 

synthetic surface temperature (Ts) (Liu and Weng 2012) and evapotranspiration (Anderson et al., 

2010). However, the direct implementation of STARFM in these applications revealed severe 

errors due to the STARFM limitations (heterogeneity, window size, and spectrally similar 

pixels). Thus, Weng et al. (2014) incorporated the annual temperature cycle and a linear spectral 

mixing analysis within the original STARFM model and proposed the spatio-temporal adaptive 

data fusion algorithm for temperature (SADFAT) mapping. Although the predicted Ts images 

showed good agreements with actual/reference Ts images, the method required adjusting the size 

of the moving window and the number of land cove types each time before the model 

implementation (Weng et al., 2014). Huang et al. (2013) and Wu et al. (2013) applied a bilateral-

based filter and a variation-based filter respectively to calculate the predicted value of the Ts 

within the moving window instead of using the original filter-based method of STARFM. 

However, in both of these studies, Ts outliers within the moving window of interest was affected 

by the predicted images and produced uncertain synthetic Ts images. 

2.2 Unmixing-based spatio-temporal fusion methods 

The basis of unmixing-based fusion methods was the employment of a classification technique in 

generating synthetic image having both high spatial and temporal resolutions. For instance, 

Zurita-Milla et al. (2009) used a linear unmixing model to un-mix MERIS time-series images 

acquired at 300 m spatial resolution using a land use database with a 25 m spatial resolution.  

The approach was based on assigning the unmixed signals to the corresponding land-use class 

presented in the central pixel of k*k MERIS neighborhood. Though the results were promising in 



monitoring vegetation dynamics at Landsat-like spatial (~25 m) and MERIS-like spectral and 

temporal ~3 days) resolution; however, the accuracy of this method was highly dependent on the 

quality and the availability of the land use database. In another study, Zhang et al. (2013) further 

intensified the ESTDFM proposed by Zhu et al. (2010) by incorporating ISODATA 

classification techniques. This particular approach had four main steps:  

i. classifying Landsat images using a patch–based ISODATA classification technique and 

calculating the abundance of end members within a moving window;  

ii. unmixing of the three MODIS images using those end members;  

iii. predicting two synthetic images by calculating the sum of L(t1) and L(t3) with the 

corresponding difference images of unmixed MODIS images; and  

iv. generating the final synthetic image by weighting the two predicted images produced in 

the previous step.  

This method eliminated the requirement of a high spatial resolution land use map as the case in 

Zurita-Milla et al. (2009). However, it would have the same problems and issues of ESTARFM 

proposed by Zhu et al. (2010). 

2.3 Sparse representation-based spatio-temporal fusion methods 

Huang and Song (2012) introduced the concept of the sparse representation-based spatio-

temporal reflectance fusion model (SPSTFM). They used MODIS images taken at 3 times 

[M(t1), M(t2), and M(t3)] and two Landsat images taken at 2 times [L(t1), and L(t3)] to generate 

synth-L(t2). The method consisted of four steps:  

i. enhancing the three MODIS images to the equivalent spatial resolution of Landsat image 

(i.e., 30 m) through a sparse representation technique;  

ii. building a dictionary pair (an image processing method) using the two counterpart 

MODIS and Landsat images [M(t1) and L(t1); M(t3) and L(t3)] and the other MODIS 

image [M(t2)]; 

iii. predicting the difference image of Landsat data using the learned dictionary pair; and  

iv. reconstructing the predicted Landsat image using different weighting parameters.  

This method provided better results (based on R
2
 and RMSE) when compared with the 

STARFM-based fusion methods; however, it was computationally expensive and impractical for 

near real time applications. Song and Huang (2013) improved the SPSTFM method by 

employing a sparse representation procedure that include dictionary training and spars coding, in 

order to enhance the spatial resolution of MODIS images (known as transition images) to the 

spatial resolution of Landsat image. Then two transition images taken at t1 and t2 and one 

Landsat image [L(t1)] was used to predict the synthetic Landsat image at time 2 (t2) by using a 

high pass modulation technique. This method used only three input images to predict the 



synthetic image. Thus, it eliminated one of the SPSTFM problems, however it required relatively 

longer processing time due to the dictionary training. 

3.0 Concluding remarks 

In this paper, we reviewed three different groups of image fusion methods that were used for 

enhancing the spatio-temporal resolutions of satellite images. These methods were: spatio-

temporal adaptive fusion methods, unmixing-based fusion methods, and sparse representation-

based fusion methods. Actually, it was difficult to point out the most reliable method, as the 

comparisons among them showed that there were no superior one over the others in all 

circumstances. It was found that the selection of an appropriate method would depend on many 

factors including data availability and their quality, type of application and area of interests, and 

landscape properties. In summary, it could be stated that satellite image fusion methods started to 

move from generic to advanced approaches considering sensor, context, application and other 

parameters in the process. Discussion from this paper would also open up windows for 

researchers to conduct more studies with different methods to delineate suitability depending on 

their area of studies. 
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