In this paper, the authors discuss the components of cartographic time and describe three methods of conceptualizing geographic temporality. The discussion is heavily based on traditional relation database perspectives (i.e., database lacking temporal considerations). Although it facilitates studying geographic temporality, the limitation of referring to traditional methods is obvious. For example, the consistency of temporally-changeable data is hard to promise even in a database with space-time composite. Moreover, this paper seems old for current research since the traditional database perspective is old.


According to the authors, the three important components of cartographic time are the difference between world time and database time, the relationship between version and state, and the interrelationships between object versions. However, the world time and database time nowadays are not much different in real-time data project. The high rate of data collection also blurs the version difference. That said, versions seem not to be aware as states captured in real time. The interrelationships between object versions are more implicit. In other words, huge amount of sequential information collected for the object. The interrelationships are not obvious until we start mining them. Besides, the collected data are not always stored in a database (i.e., the form of datasets may not satisfy the paradigms). Therefore, the traditional methods apply to investigate geographic temporality is not the best choice in most situations. New algorithms and models are play important roles in current temporal geography.

Comments are closed.