
Spatial Modelling of Air Pollutants in the City of Calgary and 

Surrounding Areas 
 

Isabelle Couloigner1, Stefania Bertazzon1, Fox Underwood1, Markey Johnson2, 
Keith Van Ryswyk2 

 
1University of Calgary, Department of Geography, 2500 University Dr. NW, Calgary, AB, Canada, T2N 1N4 

Email: {icouloig, bertazzs, feunderw}@ucalgary.ca 
 

2Health Canada, Air Health Science Division, 269 Laurier Ave West, Ottawa, ON, Canada, K1A 0K9 
Email:  {markey.johhnson, keith.vanryswyk}@hc-sc-gc.ca 

 

Abstract 

This study presents a spatial analysis of air quality over the City of Calgary and surrounding areas to 

support local air zone management strategies and air pollution health studies. Land use regression (LUR) 

models were estimated for nitrogen dioxide (NO2), particulate matter (PM10, PM2.5), and a group of 

volatile organic compounds (BTEX) in summer 2015 and winter 2016. Both ordinary least squares (OLS) 

regression and geographically weighted regression (GWR) methods were applied. The results showed 

that GWR consistently performed statistically better and provides a more appropriate tool to model the 

spatial variability of air pollutant at the intra-urban level and across the urban-rural continuum. LUR 

models are consistent over a 5-year interval. 

 
Background and Relevance 

Air pollution is a health concern, due to its association with respiratory and cardiovascular, 

among other health conditions (Rückerl et al., 2011). In Canada, air pollution and exposure levels 

vary within urban areas, across urban areas, and over the urban-rural continuum (Ryan and 

LeMasters, 2007; Weijers et al., 2004; Westerdahl et al., 2005). This study addresses the spatial 

variability of selected air pollutants over an area that includes a large metropolitan area and a 

surrounding more rural zone. Land use regression (LUR) is used to identify land use variables 

associated with measured pollution levels and estimate air pollution at fine spatial resolution. 

The mechanics of LUR models are like any other regression model; however, the dependent 

variable is an air pollutant recorded over an urban area, whereas the independent variables 

represent land use information, as well as elevation, wind speed and direction, population 

densities, traffic volumes, etc. (Henderson et al., 2007).   

This study builds on a previous study conducted by our group, by following up after a 5-year 

interval, i.e. sampling campaigns were conducted in summer 2010 and winter 2011, with a 

follow-up campaign during corresponding periods in summer 2015 and winter 2016  (Bertazzon 

et al., 2015; Bertazzon et al., 2016). In comparison with the 2010-2011 study, the 2015-2016 

study featured a larger set of sampling points and extended over a larger geographic area, 

including rural zones and satellite communities, in addition to the metropolitan area.  

Air pollution estimates generated by this study will be used in a variety of health studies to 

examine associations between air pollution and various adverse health outcomes, for e.g. it will 

be used in a health impact assessment by CRAZ (Calgary Regional Airshed Zone) as part of its 

local air zone management strategies. General principles drawn from this study will be used to 



develop recommendations that can be broadly applied in other communities.  

Methods and Data 

Two-week integrated measurements were collected, at 125 sites, of nitrogen dioxide (NO2), a 

group of volatile organic compounds (BTEX), particulate matter (PM10, PM2.5), black carbon 

(BC), and PM2.5 components during summer 2015 (August 5 - 19) and winter 2016 (January 20 

- February 3). BTEX, comprising benzene, toluene, ethylbenzene and (m+p) xylenes, provide a 

well-rounded picture of VOCs that are present in most urban areas. The study area was centered 

on the metropolitan area of Calgary, and extended to Airdrie to the north, Chestermere to the 

east, Okotoks to the south, and Rocky View County to the west, including the areas in-between, 

with the exception of First Nations land managed under Treaty 7.  

Land use data were collected through official sources: the Calgary Region Open Data catalogue, 

the City of Calgary data, and Rocky View County data. Topography information for the study site 

was acquired from AltaLIS lidar. Road and Rail network data for Alberta was acquired from the 

National Road Network (NRN) distributed by NRCan Geogratis and from DMTI Spatial. NRN 

uses the same road classification than the Province and Municipalities (i.e. 1. Highway; 2. 

Expressway; 3. Arterial; 4. Collector; and 5. Local) and provide a more accurate representation 

of Traffic Volume. Industrial point source emissions were acquired from the interactive maps of 

the Canadian Environmental Sustainability Indicators (CESI, 2015). Predictor variables (Table 

1) were then defined on circular buffers of variable sizes from each sampling point.   

Table 1. Land use, Industrial and Environmental Variables 

Variables Unit or description 
Circular buffers 
(meters) 

Elevation 
Elevation at the sampling site 

in meters. 
 

Local roads 

Total length of road segments 

within buffer, in meters. 
100,200,… , 500,750, 1000 

Collector roads 

Arterial roads 

Expressways and Highways 

DMTI Secondary highways 

Rail network 
Total length of rail segment 

within buffer in meters. 

Land use: residential 

Zoning category 100,200,…,500,750, 1000 

Land use: industrial 

Land use: commercial 

Land use: institutional 

Land use: parks 

Industrial PM25 emissions 

Reported emitting points. 1000 to 6000 every 1000 Industrial NOx emissions 

Industrial VOCs emissions 

Distance to airports (Calgary, 
Springbank, small) and heliports. 

Distance in meters from the 

sites to the airport of interest. 
 

Air pollution data were combined with land use information to develop LUR models. Cross-

correlation analyses, stepwise selection and subsets regression methods (Olejnik et al., 2000; 



Frost, 2014; Loh, 2011) were used to help in identifying best predictors. Getis-Ord Gi and global 

Moran’s I spatial statistical tests were conducted to assess spatial clustering and autocorrelation 

in the pollutants. Ordinary least squares (OLS) regression (Burt et al., 2009) was applied, as 

individual pollutants displayed different degrees of spatial variability. Geographically weighted 

regression (GWR) (Fotheringham et al., 2002; Bivand, 2015; Gollini et al., 2015) was applied to 

analyze pollutants displaying substantial spatial variability and self-similarity over short 

distances.  

Results 

For each of the pollutants, the values measured in summer and winter were summarized by 

descriptive statistics (Figure 1), prior to calculating summer and winter LUR models. 

  
Figure 1. Seasonal observed values for NO2, PM2.5, BC and BTEX. 

The plots suggest that most pollutants exhibit greater variability in the winter, since some 

emission sources vary by season (e.g., due to seasonal variation in heating or idling vehicles in 

cold temperature). 

Figure 2 presents recorded values (a), along with results for OLS (b) and GWR (c) predictions of 

NO2 for summer 2015 as an example.  

a.  b.  c.  

Figure 2. Predicted NO2 for summer campaign with OLS (b) and GWR (c) methods compared to 

Observed NO2 (a). 



Most pollutants exhibited spatial patterns characterized by higher values in the eastern part of 

the study area, where more industrial facilities are located (Figure 2); this pattern was likely 

affected by the topography and prevailing winds as industrial areas are located in the flat part of 

Calgary and the wind mostly blows from W, NNW or SW. Most pollutants exhibited significant 

seasonal variations (Figure 1). 

Table 2 summarizes regression results for selected pollutants. 

Table 2. Standardized OLS regression predictors and GWR corresponding model results for the summer 

and winter campaigns 

Predictors 
Summer 

NO2 
Winter 

NO2 
Summer 

PM2.5 
Winter 
PM2.5 

Summer 
BTEX 

Industrial land use 1000 m 0.23 0.18 0.23 0.19  

NOx/VOC emitters 5000 m 0.31 0.16   0.48 

PM emitters 3000 m (S)/6000 m(W)   0.17 0.25  

Elevation -0.25 -0.48 -0.37 -0.60 -0.28 

Rail 750 m (S) / Rail 1000 m (W) 0.19 0.15    

Distance to Calgary airport  -0.38 -0.44 -0.43 -0.39 -0.14 

Local roads 1000 m / 200 m (PM)  0.22  -0.07 0.14 

Collector 100 (NO2) / 200 m (PM) 0.10  0.11   

DMTI Secondary highways 1000 m  -0.07  -0.07  

Arterial 750 m   0.15   

Expressways+Highways 750 m 0.16     

Commercial land use 1000 m    0.08  

OLS R2 (adj.) 80.7 (79.4) 87.3 (86.5) 62.5 (60.1) 82.8 (81.7) 54.8 (53.2) 

GWR R2 (adj.) 89.7 (85.7) 91.8 (88.7) N/A 91.2 (87.0) 64.7 (59.2) 

OLS Breusch-Pagan test (p-value) 18.8 (0.009) 9.5 (0.22) 3.8 (0.7) 1.74 (0.88) 12.3 (0.015) 

GWR F2-test (p-value) 2.14 (0.002) 1.64 (0.03) N/A 1.84 (0.007) 2.30 (0.005) 

OLS AICc 398.42 587.92 168.22 344.78 266.75 

GWR AICc 373.26 584.96 N/A 328.67 255.66 

OLS Res. Sum of Sq. 196.92 1217.2 26.97 113.72 61.28 

GWR Res Sum of Sq. 105.58 788.63 N/A 58.4 47.84 

As shown in Table 2, OLS models seemed to yield a good fit for all pollutants and seasons but 

summer BTEX (R2 = 0.55). For all cases, the residual values were normally distributed, and there 

was no evidence of multicollinearity among predictors. However the Breusch-Pagan (1979) test 

infers evidence of heteroscedasticity in the models for Winter NO2 and PM2.5 in both seasons. 

Heteroscedasticity is likely associated with spatial autocorrelation and/or non-stationary of the 

residuals. Hence, GWR models were tested, as Getis-Ord Gi and Moran’s I tests showed spatial 

clustering for most pollutants. In all cases, GWR models (Table 2) provided a statistically 

significant improvement over OLS as their R2 increased while their AICc (Akaike, 1974) and 

Residuals Sum of Squares decreased. Topography (elevation), pollutant emitting sources, and 

distance to airport were significant predictors in all cases. Roads were significant predictors but 

predictive road classes varied by pollutant and season. Heteroscedasticity, or spatial 



heterogeneity, may also represent differences in the urban/rural continuum, which are modelled 

more reliably by the spatially varying GWR coefficients. Despite some differences, the overall 

model results were consistent with the 2010-2011 models (OLS and GWR for NO2), both in 

terms of predictors and fit (Bertazzon et al., 2015; 2015; Bertazzon et al., 2016). The 2015-2016 

models benefitted from a larger sample size, and a more diverse sampling sites.  

Conclusions 

This research yields a localized version of land use regression modeling, which increases the 

reliability and accuracy of air quality estimates in the rural/urban continuum, and provides a 

detailed analysis of the significance of each predictor at the local level.  While most of the times 

a simple LUR model such as OLS provides a satisfactory fit, GWR yields spatially varying 

coefficients, which  can account for intra-urban and urban/rural spatial variability of the 

pollutants, thereby providing more reliable predictions, as well as a more accurate model of air 

pollution at the intra-urban and rural/urban levels. Finally, this research suggest that LUR 

models in Calgary were consistent over a 5-year interval. Future analyses will include temporal 

modelling along with the specification of spatially autoregressive (SAR) analysis. 
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