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Abstract 
 

Canopy vertical structure described by leaf area index (LAI) and canopy height is an important 
input for ecology, climatology, hydrology, and biochemistry modelling and an essential 
measurement for wildlife habitat suitability.  However, accuracy of LAI and canopy height 
estimation with optical remote sensing in mixed prairie grasslands is highly influenced by large 
amounts of dead vegetation, biological soil crust, and bare soil. This study explored the potential 
of Radarsat-2 data to retrieve LAI and canopy height. In total eight fine quad-pod Radarsat-2 
images with incidence angles from 20.9° to 46.5° were acquired from June 15 to July 9, 2014 in 
Grasslands National Park, Canada.  Co-polarization ratio (HH/VV), cross-polarization ratios 
(HV/HH; HV/VV; VH/HH; and VH/VV), Radar Vegetation Index, Depolarization ratio 
(σ_vh^0 (dB)-σ_vv^0 (dB)), and the Freeman-Durden decomposition components were used 
to establish relationships with ground measured LAI and canopy height. Results indicate that 
incidence angle is critical for both LAI and canopy height estimation with the best result 
(r2=0.70 and 0.69 respectively) achieved using FQ23 (41.9°-43.3°) data.  Co-polarization ratio 
(HH/VV) is the most suitable parameter for LAI and canopy height estimation.  
 

Background and Relevance  
 

Leaf area index (LAI) and canopy height are two indicators of canopy vertical structure. 
They are key parameters in the land surface-atmosphere interaction models (Knyazikhin 
et al., 1998).  LAI is important in modelling because it controls photosynthesis and 
respiration rates of vegetation, the interception of precipitation, and the portioning of 
energy available to sensible and latent heat(Wilson et al., 2002). Canopy height is vital 
for it partially determines surface roughness and thus affects the energy balance 
between land surface and atmosphere (Raupach, 1994). In addition, LAI and canopy 
height are two essential measurements for evaluating suitability of wildlife habitat 
(McDermid et al., 2009), and monitoring grassland vegetation growth and assessing 
grassland health (Chen et al., 2013).  
 
The availability of temporally and spatially explicit remote sensing data makes it 
possible to quantify temporal and spatial variations of LAI and canopy height that are 
essential for modelling (Nelson et al., 2009). Since the advent of Landsat Multispectral 
Scanner (MSS) in 1972, numerous studies have been conducted to quantify LAI with 
optical remote sensing approaches (Propastin and Kappas, 2009; Tang et al., 2016). 
However, accuracy of LAI estimation from optical remote sensing data in semiarid 
mixed grassland is limited by presence of considerable amount of dead vegetation, 
biological soil crust (BSC), and bare soil (Li et al., 2014).  Although efforts have been 
made to improve LAI estimation by developing a litter-corrected hyperspectral index 
(He et al., 2006) and taking spatial and temporal variations of LAI into account (Li and 



Guo, 2013) in such mixed prairie grasslands,  the achieved r2 values of LAI were still not 
beyond 0.60.  
 
Radar backscattering coefficient data has been well related to LAI in croplands (Ulaby et 
al., 1984), and since then considerable research has been conducted on quantifying LAI 
in forests and croplands (e.g., Manninen et al., 2005; Mattia et al., 2003) . More 
recently, C- band and X-band synthetic aperture radar (SAR) data have been used in 
monitoring irrigated grasslands (Baghdadi et al., 2016; Hajj et al., 2014) and mapping 
Western Canada grassland (Buckley and Smith, 2010; Smith and Buckley, 2011). 
However, limited research has been conducted on quantifying grassland biophysical 
parameters, including LAI in mixed prairie grassland. In addition, canopy height 
estimation in grasslands with remote sensing approaches has not been documented in 
the literature, to our knowledge, although LiDAR data, SAR data, and SAR 
interferometry techniques have been widely used for canopy height estimation in forests 
(Chirici et al., 2016; Ningthoujam et al., 2016; Sexton et al., 2009). 
 
This paper investigated potential of polarimetric Radarsat-2 images for LAI and canopy 
retrieval in semiarid mixed grassland.  Specifically, this study investigated the influence 
of incidence angle of Radarsat -2 images on LAI and canopy height estimation. The most 
suitable SAR parameters including the co-polarization ratio, cross-polarization ratios, 
depolarization ratio, radar vegetation index (RVI), and Freeman-Durden decomposition 
parameters were also determined.  

 
Methods and Data 

 
Field data 
Field data including leaf area index (LAI) and canopy height were measured in the 
growing season of 2014 (June 20- July 02) in Grasslands National Park (GNP, 49.10°N, 
106.89°W), Canada (Figure 1). GNP, as a portion of northern mixed grass prairie, is 
characterized by large amount of dead vegetation due to the lack of fire and light 
grazing.  The presence of dead vegetation, biological soil crust (BSC), and bare soil exert 
a significant effect on LAI estimation and canopy height estimation using optical remote 
sensing data. Major soil types in GNP are Chernozemic and solonetzic soils (Fargey et 
al., 2000). Vegetation communities consisting of upland, valley, and slope were 
identified based on topography. Upland vegetation communities are dominated by 
speargrass - blue grama (Stipa comate - Bouteloua gracilis) and western wheatgrass - 
sedge (Agropyron smithii - Carex sp.)(Li and Guo, 2014). Western wheatgrass and silver 
sagebrush (Agropyron smithi - Artemesia cana) are the main species in valley vegetation 
communities (Li and Guo, 2014). Slope land communities hold the main vegetation 
species of both valley and upland. Crested wheatgrass (Agropyron cristatum) and 
smooth brome (Bromus inermis) communities are the two main disturbed communities.  
 
LAI and canopy height were measured using a LAI-2000 plant canopy analyzer (Licor, 
Lincoln,USA) and a ruler, respectively, in the fourteen sites randomly set up in upland, 
valley, slope land, and disturbed communities (Figure 1).  The measurements were 
taken within a 50 × 50 cm quadrat at 10 m intervals over two 100 m long transects 
crossing at right angles at each site, yielding 20 measurements at each site. The 20 



measurements of LAI and canopy height at each site were averaged respectively for 
statistical analysis to avoid spatial autocorrelation. Note that the measured LAI is not 
only from green vegetation, but also include standing dead vegetation.  Canopy height 
was measured as the aboveground height of the majority vegetation within each 
sampling quadrat. The average, maximum, minimum, and standard deviation of LAI 
and canopy height among the sampling sites are described in Table 1, and a LAI-canopy 
height scatter plot is shown in Figure 2.  
 

 
 
 
 
Figure 1 The geographic location of the study site with distribution of sampling sites in 
2014 (The background is Radarsat-2 FQ1 image acquired on Jun 02, 2014; and RGB was 
assigned as HH, HV, and VV backscatter coefficients) 
 
Table 1 Descriptive analysis of leaf area index (LAI) and canopy height sampled in the 
summer of 2014 

Statistic Description Leaf Area Index (m2/m2) Canopy Height (cm) 
Average 1.8 28 

Maximum 3.1 39 
Minimum 0.9 21 

Standard Deviation 0.7 6 
 



 
Figure 2.  The relationship between leaf area index (LAI) and canopy height derived 
from the field measurements of 2014 
 
Images 
In total eight Radarsat-2 fine quad-pod single-look complex (SLC) images acquired from 
Jun 15 through July 09, 2014 were used in this study (Table 2). The incidence angles of 
the images range from 20.9° to 46.5° and the spatial resolution is 5 m. Precipitation 
within three days and 12 hours prior to acquisition (Table 2) were downloaded from the 
Environment Canada website to check the effects of rain on the data quality. Raindrops 
and dew after raining will enlarge canopy water content and thus increase backscatter.   
Based on the environmental data in Table 2, the quality of those images was not directly 
compromised by dew or raindrop. However, the FQ12 image on June 18 and the FQ5 
image on June 19 may be influenced by canopy and soil moisture content.   
 

Table 2 The Radarsat-2 images used in this study 

Month-
Day-
2014 

Beam 
mode 

Incident angle 
range (°) 

Spatial 
Resolution X 
(m) × Y (m)  

Daily 
Precipitation 

(mm) 

3 days' 
precipitation 

(mm) 
 Jun 15 FQ23 41.9-43.3 4.73 × 4.94 0.2 9.6 
Jun 18 FQ12 31.5-32.9 4.73 × 4.96 24.9 89 
 Jun 19 FQ5 23.4-25.3 4.73 × 4.97 0.4 113.7 
 Jun 28 *FQ3 20.9-22.9 4.73 × 5.33 0.7 20 
Jul 02 FQ27 45.2-46.5 4.73 × 4.85 0 2.7 
Jul 05 *FQ7 25.8-27.6 4.73 × 4.74 0 0 
 Jul 06 FQ10 29.2-30.9 4.73 × 5.18 0 0 
Jul 09 FQ23 41.9-43.3 4.73 × 4.94 0 4.5 

 



The Radarsat-2 images were pre-processed and then SAR parameters were retrieved 
following standard procedures (Figure 3). Orthorectification of the Radarsat-2 images 
was conducted using the Radar Specific Model and Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model Version 2 
(GDEM V2) in the Radar Ortho Suite of PCI Geomatica 2015. After orthorectification, 
speckle noise of the images was filtered using the boxcar filter (5×5 pixels) approach. 
The boxcar method is commonly used when the features on the image are relatively 
homogenous and loss of spatial resolution is not a concern (Lee et al., 2015). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  The flow chart of Radarsat-2 processing for leaf area index (LAI) and 
canopy height estimation 

Methods 
After speckle removal, SAR parameters were retrieved from the Radarsat-2 images for 
quantifying LAI and canopy height through simple linear regression. The retrieved SAR 
parameters were vegetation scattering (dipole scattering), double bounce (dihedral 
scattering), and surface scattering (Bragg scattering) (Freeman and Durden, 1998), co-
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polarization ratio (HH/VV), cross-polarization ratios (HV/HH, HV/VV ,VH/HH, and 
VH/VV), depolarization ratio, and Radar Vegetation Index (RVI). Depolarization ratio 
(x_v) that is sensitive to surface roughness (Gherboudj et al., 2011) was calculated from 
Eq. (1), and  RVI which is sensitive to biomass variation (Kim and van Zyl, 2009) was 
calculated from Eq. (2). 

       (1) 

Where  and  are the VH cross-polarization and VV co-polarization backscatter 
coefficients in decibel (dB) respectively.  

                           (2) 

Where  is the cross-polarization backscattering and  and   are the co-
polarization backscattering coefficient in power unit.  
 
To match the 100 × 100 m sampling site size, SAR parameters at each sampling site 
were retrieved within a 19 × 19 pixel window size and then averaged to represent the 
sampling site. Outliers of LAI and canopy height were checked at the quadrat level based 
on statistical analysis and the photos taken at the quadrats. After outlier removal, the 
sample number for analysis of most images is 12, expect for the July 5 image that only 
covered 10 sampling sites.   

 
Results and Discussion 

 
SAR parameters for canopy height estimation  
 
The r2 values of SAR parameters for canopy height estimation are presented in Table 3.  
The best estimation on canopy height was achieved by the July 9 FQ23 image with an r2 
value of 0.69, followed by an r2 value of 0.65 using the June 15 FQ23 image. The July 2 
FQ27 image could significantly account for 50% variations in canopy height. From the 
first image acquisition on June 15 to the last one on July 9, canopy height gradually 
increased until reach the growing peak in early July. Considering canopy height was 
measured during June 20 to July 2, it is not surprisingly to see a slightly better 
performance of the July 9 FQ23 image than that of the June 15 Q23 image. The FQ27 
image on July 2 was not good as the June 15 FQ23 image, which indicated incidence 
angle of the image was more critical than acquisition time for canopy height estimation 
in grasslands.   
  
The best SAR parameter for canopy height estimation is the co-polarization ratio 
(HH/VV).  The SAR parameters including the cross-polarization ratio (HV/VV and 
VH/VV), de-polarization ratio, and vegetation scattering also demonstrated certain 
ability for canopy height estimation. Nonetheless, they were not consistently good as the 
HH/VV for the three shallow incidence angle images including the June 15 and July 09 
FQ23 images and the July 2 FQ27 images. The other SAR parameters, including RVI, 
HV/HH, VH/HH, surface scattering, and multiple scattering did not demonstrate 
potential for canopy height estimation. Conventionally, HV and VH backscatter is 
assumed to be similar (Moran et al., 2012); however, the difference in the r2 values on 
canopy height estimation using the HV/HH and VH/HH, or the HV/VV and VH/VV can 



be large. For example, using the July 9 FQ23 image, the r2 value (0.58) of HV/VV is 
much larger than that (0.40) of the VH/VV. 
 
Table 3  The r2 values of Radarsat-2 parameters for canopy height estimation 

Date 
Beam 
mode RVI 

HH/
VV 

HV/
HH 

HV/
VV 

VH/
HH 

VH/
VV 

D-
ratio 

V 
 

scatte
r 

S  
scatte

r 

M 
scatte

r 
Jun 
15 FQ23 0.17 0.65* 0.05 0.35 0 0.31 0.26 0.64* 0 0.35 

Jun18 FQ12 0.14 0.25 0.05 0.40 0.05 0.43* 0.38 0.14 0.15 0.04 
Jun19 FQ5 0.03 0.42* 0 0.07 0 0.08 0.22 0.38 0.12 0.12 
Jun28 FQ3 0.01 0.13 0 0.02 0 0.04 0.07 0.33 0 0.14 
Jul02 FQ27 0 0.5* 0.09 0.17 0.07 0.23 0.24 0.45* 0.01 0.35 
Jul05 FQ7 0.29 0.26 0.22 0.33 0.37 0.42* 0.44* 0.20 0.03 0.08 
Jul06 FQ10 0.20 0.33 0.09 0.31 0.02 0.21 0.21 0.31 0 0.20 
Jul09 FQ23 0.32 0.69* 0.09 0.58* 0 0.40 0.35 0.20 0.15 0.22 
*denotes the statistical significance at the 0.05 level. D-ratio is depolarization ratio; V, S, 
and M scatter represents volume scattering, surface scattering, and multiple scattering 
respectively.  
 
SAR parameters for LAI 
 
The r2 values for LAI estimation from the retrieved SAR parameters are presented in 
Table 4.  The largest r2 value is 0.70 for LAI estimation which was achieved using the 
FQ23 image on June 15.  The July 2 FQ27 image also demonstrated good performance 
on LAI estimation with an r2 value of 0.64. The FQ7 image on July 5 and FQ5 image on 
June 19 also demonstrated potential for LAI estimation. However, the SAR parameters 
retrieved from the FQ12 image on June 18 and the FQ10 image on July 6 did not show a 
promise for LAI estimation. The best r2 value (0.70) of LAI estimation in this study is 
much larger than that (0.55)  using hyperspectral vegetation indices (He et al., 2006) 
and that of 0.48 using multispectral Landsat images (Xu, 2016) in the same study area. 
 
The co-polarization ratio (HH/VV) is the best SAR parameter for LAI estimation.  The 
other potential SAR parameters for LAI estimation are the cross-polarization ratio 
(HV/VV, VH/VV, and VH/HH), de-polarization ratio, RVI, and vegetation scattering. 
The retrieved SAR parameters including RVI, HV/HH, surface scattering, and multiple 
scattering did not contain useful information for LAI estimation. Similar to canopy 
height estimation, using the HV/HH and VH/HH, or the HV/VV and VH/VV can also 
lead to fairly large difference in the r2 values, although HV and VH are conventionally 
assumed to be similar (Moran et al., 2012).  Using the July 9 FQ23 image as an example, 
the r2 value of the HV/VV for LAI estimation is 0.58, while of the VH/VV is only 0.33.   
 
Table 4 The r2 values of Radarsat-2 parameters for leaf area index (LAI) estimation 

Date Beam RVI HH/ HV/ HV/ VH/ VH/ D- V S M 



mode VV HH VV HH VV ratio scatte
r 

scatte
r 

scatte
r

Jun1
5 FQ23 0.13 

 
0.70* 0.03 0.31 0 0.27 0.22 0.40* 0 0.21

Jun1
8 FQ12 0.07 0.27 0.01 0.30 0.02 0.33 0.29 0.07 0.24 0.11

Jun1
9 FQ5 0.08 0.48* 0.03 0.15 0.05 0.19 0.34* 0.48* 0.15 0.09

Jun2
8 FQ3 0 0.20 0 0 0 0.01 0.04 0.10 0 0.07

Jul02 FQ27 0 0.64* 0.19 0.14 0.16 0.21 0.22 0.23 0 0.29
Jul05 FQ7 0.40* 0.28 0.29 0.47* 0.48* 0.58* 0.57* 0.02 0.02 0
Jul06 FQ10 0.14 0.21 0.08 0.20 0.03 0.15 0.16 0.15 0.02 0.15
Jul09 FQ23 0.30 0.59* 0.08 0.54* 0 0.33 0.28 0.07 0.13 0.07
*denotes the statistical significance at the 0.05 level. D-ratio is depolarization ratio; V, S, 
and M scatter represents volume scattering, surface scattering, and multiple scattering 
respectively. 
 
The good performance on canopy height and LAI estimation of large incidence angle 
images including the FQ23 and FQ27 images possibly attributes to the fact that the 
larger incidence angle, the smaller penetration capability to surface, and thus 
backscatter coefficients of the images are more controlled by vegetation rather than 
surface. The small incidence angle image, such as the FQ3 image, could not capture the 
variations in canopy structure, possibly because the contribution to the backscattering 
coefficient was more from the surface instead of the canopy due to the high penetration 
capability. The inverse relationship between incidence angle and penetration may also 
explain the potential of the FQ5 and FQ7 images and the inferiority of the FQ10 and 
FQ12 images for canopy structure estimation in grasslands. However, a theoretical SAR 
backscattering model is needed in the future study to fully understand how incidence 
angle, frequency, spatial resolution, and temporal revisit etc. of the SAR images affect 
canopy structure estimation in grassland ecosystems. 

 
 

Conclusions  
 
This study investigated multi-angular and multi-polarization Radarsat-2 images for 
quantifying canopy structure parameters including canopy height and leaf area index in 
semiarid mixed prairie grasslands where application of optical remote sensing data is 
hindered by the contribution of dead vegetation, biological soil crust (BSC), and bare 
soil to the spectra. Research concluded that incidence angle is critical for both LAI and 
canopy height estimation and the best canopy structure estimation was achieved by the 
FQ23 (41.9°-43.3°) image.  The co-polarization ratio (HH/VV) is the most suitable 
parameter for LAI and canopy height estimation.  
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