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Abstract 
 

Useful biophysical information such as surface temperature and surface energy flux provided by 
thermal infrared (TIR) remote sensing sensors are commonly used for studying urban 
temperature variations and urban heat islands. However, an important limitation of TIR 
imagery is the influence of local microclimatic variability (i.e., wind, precipitation and humidity) 
on sensor observations. This can cause the same scene components (e.g., roads and buildings) to 
exhibit different thermal states (i.e., temperatures) when exposed to varying microclimate 
conditions. In the case of airborne TIR imagery, the ambient sensed temperature also naturally 
changes between flight line acquisitions, resulting in an image mosaic with different 
temperatures for the same scene components, making detailed analysis non-trivial.  
In an effort to mitigate this problem and to produce a ‘seamless’ TIR scene mosaic, we evaluate 
three different relative radiometric normalization methods on two adjacent flight-lines of TABI-
1800 data (each ~35km x 0.9km, at 50 cm spatial resolution, and 0.05 °C thermal resolution) 
that were acquired in May 2012 over The City of Calgary, Alberta, Canada. We then describe 
their effects on the resulting mosaic. The evaluated methods include: (i) Histogram Matching, 
(ii) Linear Regression based on Pseudo Invariant Features (PIF), and (iii) Theil-Sen Regression 
based on PIF. Based on visual assessment, results show that Histogram Matching produces is 
the best. Such radiometric normalization (i) increases the visual agreement between the thermal 
airborne flight lines, (ii) produces a seamless mosaic, (iii) improves radiometric agreement, (iv) 
improves hot-spot detection, and (v) provides accurate data for thermal-based energy models. 
 
 

Background and Relevance  
 

While thermal remote sensing provides important biophysical information (i.e., temperature 
and surface energy flux) about the earth’s surface, the applicability of these data still remains 
challenging due to difficulty in calibration and appropriately identifying atmospheric 
attenuation (Quattrochi and Luvall, 1999). In the case of urban surfaces, additional challenges 
are imposed by the composite and heterogeneous nature of the surface itself, as well as the 
surrounding environment (Voogt and Oak, 1997). Therefore, to use thermal remote sensing data 
to accurately measure urban thermal characteristics, it is necessary to thoroughly understand 
the limitations of such data. Furthermore, current satellite platforms only acquire moderate to 
low resolution (60 m to 1 km) thermal imagery that are not suitable for detailed thermal 
mapping of urban surfaces. As a result, airborne TIR imagery are increasingly used for urban 
mapping exercises (Hay et al., 2011; Weng, 2011). However, to thermally mapping large urban 
areas at a high spatial resolution (~1m), airborne imagery need to be acquired in numerous 
flight lines and mosaiced together; which induces geometric and radiometric variations between 
flight paths (Rahman et al., 2012). Due to these radiometric differences, the same class of scene 
objects tend to exhibit different spectral characteristics within a single mosaic, making image 
analysis and classification difficult (Tuominen and Perkkarinen, 2004).  
In an effort to reduce similar concerns, relative radiometric normalization techniques have 
been used for decades to normalize multitemporal multispectral remote sensing data (Salvaggio, 



1993; Hall et al., 1991; Schott et al., 1988). However, the applicability of these techniques on 
multitemporal thermal datasets has yet to be adequately assessed. With the increased demands 
for thermal data by the remote sensing community (Hay et al., 2011), we recognize an emerging 
need to evaluate the applicability of relative radiometric normalization techniques on high 
spatial resolution (H-res) TIR imagery. Based on these ideas, this paper focuses on the 
evaluation of three different relative radiometric normalization techniques applied to a H-res 
TABI-1800 (Thermal Airborne Broadband Imager) dataset collected over a portion of the City of 
Calgary in May 2012.  
 

 
Methods and Data 

 
Our study area is located in the west part of the City of Calgary, Alberta Canada, and represented 
by two flight lines of TABI-1800 imagery (each ~0.9 km wide x 35 km long at 50 cm spatial 
resolution) acquired at night (01:00 to 02:00) on May 13, 2012. The TABI-1800 is an airborne 
thermal camera developed by ITRES Research Limited (2012) with a swath width of 1,800 
pixels (FOV: ±20º) in the 3.7- 4.8 µm spectral region, a thermal resolution of 0.05 ºC, and the 
ability to collect up to 175 km2 per hour at 1.0 m spatial resolution. In ideal conditions, each 
TABI-1800 flight line is also acquired with a 30% overlap between adjacent flight lines. This 
dataset was collected from an average altitude of 1250 m above ground level and a 
corresponding digital terrain model (10 m spatial resolution) was used to orthorectify the 
imagery and correct for elevation based thermal gradients. 
In order to radiometrically normalize two adjacent thermal flight lines, we apply three 
radiometric normalization algorithms from the literature that are typically used to correct 
multispectral imagery (Hall et al., 1991). These include: (i) Histogram Matching, (ii) Linear 
Regression based on Pseudo Invariant Features (PIF), and (iii) Theil-Sen Regression based on 
PIF. In each case, the first flightline is considered the master image and the second flightline as 
the slave. The slave is then normalized to the master image so that it appears as if they were 
collected at same time, under the same atmospheric/microclimatic conditions.  
Histogram Matching is defined as a linear shift of the slave histogram to the master histogram 
based on the mean difference1 (Richards, 2005). To implement this method, we first calculate 
the mean difference of the overlap sections (between the master and the slave images) and then 
shift the slave histogram (derived from the entire image - not just the overlap) to the master 
histogram, based on the calculated mean difference.  
It has been argued that the spectral properties of some features (such as soil and seasonal 
vegetation) rapidly change over time, consequently the use of these features as references for the 
radiometric normalization of multitemporal images may introduce errors. To mitigate these 
errors, Salvaggio (1993) and Schott et al. (1988) suggested using pseudo invariant features 
(PIFs) as references for radiometric normalization as these features are expected to provide a 
consistent radiometric response over time. To perform a PIF-based radiometric normalization, 
we closely examined the overlap portions of the master and the slave images and manually 
selected 30 samples of three types of (pseudo invariant) land cover. 10 samples were then 
collected for each of the three cover types: (i) grass (cool), (ii) road (hot) and (iii) water (in-
between temperature). Next, the average DN values within the samples found in the slave image 
are then plotted against those of the master image so that they fit two different types of 
regression techniques: (i) Linear regression, and (ii) Theil-Sen regression.  
Linear regression normalization is based on the assumption that the atmospheric differences 
between images of the same geographic location, but collected at different times, are linearly 
correlated (Schott et al., 1988; Hall et al., 1991). To perform a PIF-based linear regression, the 

                                                   
1  The mean difference is a measure of dispersion between two independent datasets 



average DN values of the PIFs are scatter plotted and a linear regression equation is fitted to this 
point cloud. The corresponding regression equation is then applied to the entire slave image to 
radiometrically normalize it to the master image.  
The Theil-Sen regression model uses the median of pairwise slopes as an estimator of the slope 
parameter for the correlation between two datasets (Peng et al., 2008). The pairwise slopes are 
calculated for the same 30 pairs of PIFs previously mentioned and the median slope is then 
computed. Next, the median slope value and the median of the pixel values of the PIFs from the 
master and the slave are introduced into a linear equation to calculate the y-intercept. The 
resulting median slope and the y-intercept forms the T-S linear regression equation. This 
equation is then used to radiometrically normalize the slave image to the master image. 

 
Results 

 
To visually compare these results, each normalized slave image is individually mosaiced with the 
master image and the features along the mosaic join line are assessed. Visual interpretation 
reveals that most of the methods exhibit improvement over simply joining the raw datasets. 
However, the magnitude of improvement is different according to the method used and the type 
of ground targets assessed. 
For example, Figure 1 displays a portion of grassland along the mosaic line showing that all the 
applied radiometric normalization techniques improve over the raw join (Figure 1A). However, 
the Histogram Matching method (Figure 1B) produces a mosaic join that is essentially seamless. 
 

 
 
Figure 1: A comparison of three different radiometric normalizations of the cover type grass: (A) 
Raw images, (B) Linear Histogram Matching, (C) PIF-based Linear Regression, (D) PIF-based 
TS Regression, 
 



In a second example we examine a portion of a road (Figure 2) where we notice that again the 
Histogram Matching method performs very well, with a barely visible join line (Figure 2B). 
However, the PIF-based TS regression method (Figure 2D) dramatically decreases the visible 
radiometric agreement between the master and the slave images for this land cover class.  
 

 
 
Figure 2: A comparison of four different radiometric normalizations of the cover type road: (A) 
Raw images, (B) Linear Histogram Matching, (C) PIF-based Linear Regression, (D) PIF-based 
TS Regression 
 

Conclusions  
 
Three radiometric normalization techniques commonly applied to multispectral images are used 
to radiometrically normalize a very high resolution TIR dataset. Except for T-S regression, all 
other evaluated methods reveal an improved radiometric agreement between the master and the 
slave image. Visually, the best result is achieved from Histogram Matching, which is also the 
simplest and computationally fastest method. The manually selected PIF-based linear 
regression method also improves the agreement between the master and the slave images when 
compared to the raw image. However, the manual selection of features makes PIF-based 
methods time consuming and this will grow as the number of flight lines to be radiometrically 
normalized increases. Of all the methods evaluated, Theil-Sen regression is observed to be the 
most unsuitable for normalizing H-res TABI-1800 imagery. As shown in some cases it actually 
further visually decreased the radiometric agreement of specific classes shown in both the 
master and the slave images. 
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