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Abstract 

 
We propose an ensemble classification method for classifying tree genus by using LiDAR (Light 
Detection and Ranging) data. We have developed a set of descriptors (features) related to the 
geometric information given by the point cloud. The second set of features is derived from a 
more conventional method and is related to the vertical point distribution of the point cloud. We 
built two classifiers separately (geometric classifier and vertical profile classifier) using the two 
sets of features and then combine the classifiers for improving overall classification accuracy. 
Our study area is located north of Thessalon, Ontario, Canada and we are classify trees into 
three genera (pine, poplar and maple) within our study sites. Result show that the average 
classification accuracy for the geometric classifier is 88.0% and 88.8% for vertical profile 
classifier. When the classifiers are combined, the overall accuracy improved to 91.2%.     
 

Background and Relevance  
 

The use of aerial LiDAR in forestry applications has become increasingly popular for its 
ability to acquire 3D information and has proven successful in tree species/genera 
classification (Holmgren and Persson 2004; Brandtberg 2007; Holmgren et al., 2008; 
Kato et al., 2009; Ørka et al., 2009; Vauhkonen et al., 2009; Korpela et al., 2010 and 
Kim et al., 2011). Our first set of features are derived from the geometry of the LiDAR 
point distribution, this approach can be found in Kato et al. (2009) where the authors fit 
curved surfaces to the individual LiDAR tree crown and Vauhkonen et al. (2009) 
compute alpha shapes of the LiDAR tree crowns. Both methods derive features related 
to the outer shape of the tree crown, we further develop features that relate to the outer 
as well as inner geometry of the tree (branching levels). The second set of features is 
calculated from a more convention approach, examples of such an approach include 
Holmgren and Persson (2004); Brandtberg (2007); Ørka et al. (2009); Korpela et al. 
(2010) and Kim et al. (2011). These authors derived features from the vertical point 
profile reflected from the tree (or tree crown) and calculate statistical metrics that 
summarizes the point distribution within specific height percentiles or the entire profile. 
The advantage of the geometric features is that they can be easily related to the physical 
and biological implication of tree form, however they are usually more computationally 
expensive. Conversely, vertical profile features are computationally efficient but are less 
intuitive. This research takes advantage of the both perspectives and combines both 
classifiers to yield a better result. 
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Methods and Data 
 

The study area is located north of Thessalon, about 75 km east of Sault Ste. Marie, 
Ontario, Canada. We have selected eight field sites in the area and ground validated 186 
trees. We have identified white birch (Betula papyrifera Marsh.), balsam fir (Abies 
balsamea (L.)), maple (Acer saccharum Marsh.), red oak (Quercus rubra L.), jack pine 
(Pinus banksiana Lamb.), poplar (Populus temuloides), white pine (Pinus strobus L.) 
and white spruce (Picea glauca (Moench Voss)) at the field sites. 160 of the trees belong 
to three broader genera, pine, poplar and maple and therefore will be used for 
classification. LiDAR data was collected by a Riegl LMS-Q560 scanner, the flight 
altitude varies between 122 m to 250 m above ground level with point density 
approximately 40 pulses / m2 with up to five returns per pulse. 
 
The methods for deriving the geometric features are detailed in Ko et al. (2013) and 
Table 1 summarizes the six selected features for this research; Table 2 summarizes the 
26 selected vertical profile features for this research.  
 
Table 1.  

No.  Descriptions for selected geometric features 
1 Mean line segment lengths derived from point cloud divided by height of the tree 
2 

Mean line segment lengths multiplied by tree crown height to tree height ratio 

3 Convex hull volume calculated from tree crown divided by total number of points 
4 Mean orthogonal distances from each LiDAR point to the closest facet of the convex 

hull  
5 After buffer each LiDAR point by a radius of 2% of the tree height, sum the 

overlapped volume of the spheres and divided by the total number of points 
6 Ratio between tree crown height and tree height 

 
We use Random Forests (Brieman 2001; Liaw and Wiener 2002) implemented in R (R 
Development Core Team 2013) for classification. 25% of the dataset is partitioned for 
training the classifiers and 75% of the data is partitioned for validation. This optimal 
partition is an experimental result from Ko et al. (2013). The classification is performed 
separately with two classifiers and then combined by the following strategy. Using the 
geometric classifier as a base classifier, we automatically filter out trees that are 
potentially misclassified. Then these trees are classified by the vertical profile classifier 
and classification results are compared to the initial result classified by the geometric 
classifier. A final decision is made by the classifier that obtains a larger margin from the 
prediction provided by Random Forests. 



 
Table 2. Descriptions for selected vertical profile features 

  

First 
returns 
only 

Single 
returns 
only 

Last 
returns 
only 

% of canopy return 
 

F1 F2 
% of return count at 10th percentile F3 F4 F5 
% of return count at 90th percentile F6 F7 F8 
Mean height of canopy return F9 

 
F10 

SD of height F11 F12 
 SD height for canopy return F13 

 
F14 

CV height for canopy return F15 F16 
 Kurtosis of variation height for canopy return  

 
F17 F18 

Skewness of variation height for canopy return  
 

F19 F20 
Mean intensity  at 10th percentile 

  
F21 

Mean intensity at 90th percentile F22 F23 
 SD of intensity F24 

  CV intensity of canopy return 
  

F25 
Skewness of variation intensity of canopy return     F26   

SD= standard deviation; CV = coefficient of variation 
 
 

Results 
 
Table 3a shows the confusion matrix for geometric classifier; Table 3b shows the 
confusion matrix for vertical profile classifier. Table 4 shows the confusion matrix that 
demonstrates the performance of our ensemble classification. The results shown are 
based on using 75% of the data set, repeated 20 times, using (25%) as training samples, 
resulting 2400 tree samples in total for each confusion matrix. 
 
Table 3a shows that the average classification accuracy for geometric classifier is 88.0% 
and 88.8% for vertical profile classifier from Table 3b. Both classifiers have the highest 
classification accuracy in classifying maple trees. Thus, the accuracies for classifying 
pine and poplar are lower, this is because point density distribution for pine and poplar 
are similar. However, we can still observe some accuracy discrepancies between the two 
classifiers, where largest difference is observed in the producer’s accuracy for classifying 
pine. This indicates that there is a potential benefit to ensemble classification. By 
comparing the use of a geometric classifier alone with results obtained from Table 4 
(where the geometric classifier is selected as base classifier), accuracies for all genera 
improve.  



 
Table 3a. Confusion matrix for geometric classifier (average accuracy = 88.0%) 

    Actual class 
User's Accuracy (%) 

    Pine Poplar Maple 

Pr
ed

ic
te

d 
cl

as
s 

Pine 856   115   19   86.5 
Poplar 123   771   2   86.0 

Maple 27   1   486   94.6 

Producer's Accuracy (%) 85.1   86.9   95.9       

           
Table 3b. Confusion matrix for vertical profile classifier (average accuracy = 88.3%) 

    Actual class 
User's Accuracy (%) 

    Pine Poplar Maple 

Pr
ed

ic
te

d 
cl

as
s 

Pine 906   132   12   86.3 
Poplar 87   736   7   88.7 

Maple 13   19   488   93.8 

Producer's Accuracy (%) 90.1   83.0   96.3       
 
 
Table 4. Confusion matrix for ensemble classification (average accuracy = 91.2%) 

    Actual class 
User's Accuracy (%) 

    Pine Poplar Maple 

Pr
ed

ic
te

d 
cl

as
s 

Pine 903   94   5   90.1 
Poplar 86   786   3   89.8 

Maple 17   7   499   95.4 

Producer's Accuracy (%) 89.8   88.6   98.4       
 

 
Conclusions  

 
In this research, we applied ensemble methods that combine features derived from the 
geometry of LiDAR points reflected from individual trees with features derived from the 
vertical point distribution. Although geometric features have advantages over vertical 
profile features in terms of tying the close relationship with tree form, the advantages of 
vertical profile features should not be overlooked. Thus we combine both methods for 
improving classification accuracy. Table 3a and Table 3b shows that individual 
classifiers make different decisions and the differences indicate there is a potential for 
improving accuracy after combining the classifiers. By combining the decisions made by 
the two classifiers, the classification accuracy improved to 91.2% (Table 4) if the 
geometric classifier is being used as the base classifier. Since the original accuracies 



(with a single classifier) are already very high, the marginal improvement that has been 
made represents an improvement that is difficult to attain by traditional methods.   
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