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Abstract 
 

The need for effective spatial knowledge discovery in risk assessment increases as the amount of 
the spatial data which is handled and analyzed for risk assessment has enlarged. Such large 
variety of spatial data should be integrated from multiple sources presenting different types, 
semantics, and level of details weather geometrically, temporally, or thematically. Therefore, 
spatial knowledge discovery has been introduced to help decisions-makers with clear and 
efficient understanding of such complex cases of data integration. Risk, by itself, is a definition 
which is given to demonstrate the impact of a physical or human-induced phenomenon causing 
disasters or harming human-life. Spatial modeling and representing risk through risk zones (as 
crisp object) bring up the notion of the fiat nature of risk which is based on some interested 
criteria introduced by stakeholders and experts. In this regard, the issue of information 
vagueness appears in semantic definition of risk zones as well as geometries. Fiat nature of risk 
zones adds more complexity on risk assessment and risk zone representation as the 
conventional GIS methods and analytical information systems support such situations 
marginally. This paper presents the results of a PhD thesis in this regard entitled as “A 
Comprehensive Spatial Multidimensional Conceptual Model (SMCM) to Assess the Risk of 
Coastal Erosion Based on Fuzzy Set Theory”. To do so, the fuzzy spatial representation of risk 
zones and fuzzy multi-scale representation are dealt in order to improve risk assessment process 
and decision-making. Incorporating Geospatial Business Intelligence (GeoBI) paradigm and 
fuzzy set theory within Spatial Online Analytical Processing (SOLAP) necessitates developing a 
framework for designing key elements of a spatial datacube: dimensions, members, hierarchies, 
measures, and facts based on risk components (hazard, elements at risk and vulnerability). 
Thereafter, formalizing and adapting fuzzy model in such datacube should be carried out. 
Finally, some aggregation methods for fuzzy spatial data should be developed to deal with multi-
scale representation of risk zones as well as for navigating within such system (roll-up and drill-
down operations).  
 

Background and Relevance  
 
Coastal Erosion Risk (CER) is a complex and dynamic process which is the result of several 
multi-scale and spatiotemporal interactions between hazard and vulnerability of the elements at 
risk (Alexander, 2000; Blaikie, Cannon, Davis, & Wisner, 2004; Daudé et al., 2009; Varnes, 
1984). The inherent complexity of coastal erosion makes assessment of the associated risks 
complex as well (Cheng, Molenaar, & Stein, 2009). In fact, modeling the erosion, predicting its 
behavior over time, and estimating its impact on assets and human lives requires processing a 
large amount of heterogeneous data from multiple sources with different types and levels of 
details (Jadidi, Mostafavi, Bédard, Long, & Grenier, 2013). Therefore, an information system is 
required to accommodate and integrate the available heterogeneous data from different sources. 
This system should also provide users and decision makers with on-the-fly aggregation, analysis, 
synthesis, and reporting. Therefore, three main issues are conferenced in any Coastal Erosion 
Risk Assessment (CERA) for any selected region. The first issue is related to the huge amount of 



data with diverse semantics and from different sources. This introduces uncertainty and 
information vagueness right at the beginning of a risk assessment process (Bakillah, 2012; 
Sboui, 2010). The second issue is related to the distinct and multi-scale characteristics of risk 
based on the needs and interests of the participants and decision-makers (Jadidi, Mostafavi, 
Bédard, et al., 2013). This emphasizes the need for a risk-aware hierarchical data aggregation 
method in any CERA process (Cheng et al., 2009; Jadidi, Mostafavi, Bédard, et al., 2013). The 
third issue is that coastal risk zones have vague semantic definitions and are spatially or 
temporally uncertain as well as inherently multi-scale. The representation of such zones has 
been under intense investigations (Cheng et al., 2009; Dilo, By, & Stein, 2007). However, the 
literature introduces isolated solutions regarding exclusives issues. Indeed, an integrated 
approach covering all three under one umbrella (in case of CERA) is still missing.  
 
Probabilistic and Possibilistic approaches are the two main approaches which are widely 
employed to characterize information vagueness associated with risk modeling and 
representation (Aerts, Goodchild, & Heuvelink, 2003; Choa, Choi, & Kim, 2003; Cowell & Zeng, 
2003; Darbra, Eljarrat, & Barceló, 2008; Fisher, Cheng, & Wood, 2007; Kentel & Aral, 2007). 
The flexibility of the possibilistic approaches such as fuzzy-based model for dealing with 
information vagueness suggests an efficient solution for spatial representation of risk (Kentel & 
Aral, 2007). Nevertheless, the idea of fuzzy spatial data model is still a young topic in the 
Geospatial Business Intelligence (GeoBI) communities. Few efforts have tried to embed the 
vagueness for spatiotemporal information in SOLAP (Bejaoui, 2009; Siqueira & Ciferri, 2012).  
But, these efforts are mainly based on extended spatial crisp models. Indeed, none of the cited 
works use Fuzzy Set Theory explicitly to characterize information vagueness and to integrate it 
in SOLAP in a systemic way. Moreover, the methods to aggregate spatial measures resulting 
from uncertain data (i.e. information vagueness) into multiple hierarchical dimensions (and to 
represent them) are still missing. 

Methods and Data 
  
To overcome the stated issues, this research has been carried out in three phases (see Figure 1): 
� First, an analytical conceptual framework is proposed to develop a spatial multidimensional 
conceptual model (SMCM) for CERA. This framework includes four main steps including 
needs analysis, data inventory, definition of risk components (i.e. hazard, elements at risk, 
and associated vulnerability index), and finally designing a SMCM which includes 
identifying analysis dimensions and measures to calculate associated risk (Jadidi, Mostafavi, 
Bédard, et al., 2013).   

� Second, Fuzzy Set Theory is selected to overcome the issue of information vagueness (Dilo, 
2006; Kanjilal, Liu, & Schneider, 2010; Molenaar & Cheng, 2000; Pauly & Schneider, 2010; 
Robinson, 2003; Schneider, 2003a, 2003b). Our proposed approach for CERA is inspired  
from (Schneider, 2003b). A conceptual framework is then proposed based on Schneider’s 
model consisting of five main steps: (1) Identify hazard, (2) Elaborate vulnerability index, (3) 
Discretization (grid structures) , (4) Fuzzification, and (5) Fuzzy representation (Jadidi, 
Mostafavi, & Bédard, 2013). A MATLAB code is developed to perform Fuzzification and 
Fuzzy representation steps. A membership function is assigned to each cell while the risk 
value in each cell and for each indicator is assessed using the respective Fuzzy IF-THEN 
rules extracted from risk components. The membership functions serve to determine the 
level of risks. After calculating the risk for each indicator, the results are aggregated using an 
appropriate fuzzy operator (union, intersection, and difference) to calculate the overall risk.  

� Third, the proposed fuzzy-based approach is then formalized and adapted for the SMCM 
which was proposed in phase I (Jadidi, Bédard, & Mostafavi, 2013). This necessitates 
identifying where the fuzziness happens and how this can be embedded into the database 
and managed while performing the queries and representing the results. In this regards, 



spatial datacube key elements (i.e. spatial level’s attributes, spatial levels, spatial members, 
spatial dimension, spatial hierarchy, spatial measures, and spatial facts) are redefined. Tow 
concepts of fuzzy partition (a grid-based cell) and fuzzy hierarchy relations are proposed to 
build such system. Overlay (union, intersection, difference), fusion, and some arithmetic 
operators are also planned and developed for such system for spatial aggregation purpose.  

 
Figure 1: A scheme of fuzzy based analytical conceptual approach proposed for CERA 



 
The region along the coast of the St-Laurence River in Percé, near the tip of the Gaspé Peninsula 
in Eastern Quebec, Canada is identified as a potential study site to implement and validate the 
proposed methods. Table 1 presents a list of the datasets and the related parameters that are 
used for CERA in this case study.  
 

Source Vulnerability Indicators ( iv ) 

LiDAR Data  Slop , DEM, Erosion Rate 
Technical and Research Reports  Protection structure, Infrastructure situation, Type of Coastline 
Google Open Street Map  Analysis units  
Statistic Canada  Population, density of population, economical values  
Quebec Prov. Transport Dept. Road network  

Table 1: Data sources and extracted coastal erosion risk parameters (vulnerability indicators), details 
are provided in (Jadidi, Mostafavi, Bédard, et al., 2013) 

 
Results 

 
As result, a fuzzy SMCM is designed for CERA by following phase I and II (see Figure 1). The 
CERA model consists of 15 dimensions (two spatial dimensions, one temporal and 12 thematic 
dimensions) and 13 spatial measures (8 measures with geometry, 5 numeric measures) (Jadidi, 
Mostafavi, Bédard, et al., 2013). Spatially referenced facts and their respective membership 
degrees are stored in a fuzzy spatial datacube. Assigning the label of “fuzzy” to a spatial datacube 
requires at least one dimension of the datacube to be defined based on fuzzy model or fuzzy 
hierarchy relations. The proposed Fuzzy SMCM is developed based on a star schema model. For 
the estimation of the measures, a star-query model, which is a common technique in star 
schema modeling, is proposed in this work. The proposed fuzzy SMCM is adapted for both 
vector and grid-based information. A Spatial dimension is designed to store in a grid-based 
structure that is associated to a vector-based data structure (e.g. census division in a spatial 
dimension). Performing the aggregation on this dimension permits navigating from the grid-
based to the vector-based structure and vice versa. The overlay and fusion of fuzzy members use 
respectively the concept of the intersection and the union of fuzzy objects in fuzzy set theory 
with a combination of arithmetic operators such as SUM, Average, and Weighted Average. The 
overlay operator combines two fuzzy partitions to form a new fuzzy partition whilst the fusion 
operator allows the generalization of a fuzzy partition. Based on the presented fuzzy operators, 
five aggregation scenarios are investigated to support a fuzzy model in such spatial 
multidimensional datacube: (1) crisp aggregation onto crisp data, (2) fuzzy aggregation onto 
crisp data, (3) crisp aggregation onto fuzzy data, (4) fuzzy aggregation onto fuzzy data, and (5) 
fuzzy aggregation onto mixed of crisp and fuzzy data. The implementation of the proposed fuzzy 
SMCM is identical to the implementation of typical crisp spatial datacubes. The only difference 
is in measures calculation where a fuzzy operator, instead of a crisp one, should be applied to 
respective dimensions, members, and hierarchy relations either crisp or fuzzy data.   
 

Conclusions  
 
An analytical conceptual framework was proposed to overcome the aforementioned limits by 
accomplishing a comprehensive CERA system through the Geospatial BI paradigm. Fuzzy 
spatial datacubes are essential to perform more comprehensible knowledge discovery for 
effective decision-making. A fuzzy-logic-based approach was proposed in this paper to deal 
information vagueness. This concept was then embedded into a spatial datacube through 
redefining the spatial datacube elements (dimensions, members, hierarchies, measure and facts) 
as fuzzy dimensions, fuzzy members, fuzzy hierarchies, fuzzy measures, fuzzy facts, and 
requisite fuzzy aggregation operators (union, intersection, difference, overlay, and fusion). A 



Fuzzy SMCM was developed for CERA through the proposed frameworks. The proposed 
approach was applied to a study region in Percé, Quebec, Canada for validation purpose. By 
comparing the results mapped by crisp object model and fuzzy object model, it was 
demonstrated that the uncertainty which is related to object definition has noticeable influence 
on the final result.  
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