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Abstract 
 

Wildfires are frequent boreal forest disturbances, and particularly in Ontario, emulating them 
with forest harvesting has emerged as a legislated forest management goal. Since wildfires 
typically contain a considerable number of unburned residual patches, we present means for 
learning their characteristics to improve the subsequent emulation of wildfires. We present a 
method for developing probability maps for the existence of residual vegetation within wildfire-
dominated landscapes. We use the Random Forests ensemble learning approach to predict the 
occurrence and distribution of residual patches based on selected predictor variables. Satellite-
derived data is partitioned into training and validation components using a holdout approach; 
the model is constructed and calibrated using the training data and evaluated with the 
validation data. The predictive power of the model is examined using a threshold-independent 
measure of model performance at five spatial resolutions (4, 8, 16, 32, and 64 m, hereafter 
described as R4, R8, R16, R32, and R64 respectively). The predictive performance of the model 
ranges from good (at R64) to excellent (at R4) discrimination ability for one of the largest fire 
events (F01). The lowest predictive performance is observed for the smallest fire event (F02). 
 

Background and Relevance  
 

Wildfire in boreal forests is usually intense and frequent, and consumes substantial 
forest cover but does not burn the entire landscape (Perera, Remmel, Buse, & Ouellete, 
2009). Owing to the variation in the geo-environmental factors that affect fire spread, 
there are areas that partially or entirely escape fire, forming post-fire residual patches. A 
post-fire residual patch is conceptually defined as a mix of live (and dead) vegetation 
that forms a spatial continuum, ranging from undisturbed patches of live trees to a 
single stem (Swystun, Psyllakis, & Brigham, 2001). Understanding the existence and 
distribution of residual patches involves the need to assess the combined effects of 
various environmental factors. This lays the framework for assessing the ecological 
values of residual patches. Spatially explicit information about post-fire forest 
characteristics is also essential for developing land management policies in forested 
landscapes. Specifically in Ontario, mapping the characteristics of post-fire residual 
patches has become a primary requirement for emulating forest disturbances, emerging 
as a general forest management goal within disturbance driven landscapes (Perera et al., 
2009).  

The development of a framework for real world applications that emulates 
natural disturbances requires timely and spatially explicit information on residual 
occurrence. Such maps can be obtained using a predictive modeling approach by 
merging satellite-based information with ancillary data. Knowing site conditions at 
which residual patches are likely to occur (or not) forms a basic component of natural 
resource management and ecological research (Beauvais, Keinath, Hernandez, Master, 
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& Thurston, 2006). While there are several ways in which post-fire forest characteristics 
can be mapped, modeled and evaluated to learn about emulating natural disturbances, 
the incidences and distribution of post-fire residual patches within a fire-disturbed 
landscape have been poorly studied (Cuesta, Garcia, & Retana, 2009). In this study, a 
predictive model is developed to generate spatially explicit probability maps and provide 
information about the distribution of forest stands that escaped burning. 

 
Methods and Data 

 
The occurrence of residual patches was studied using the Random Forest (RF) algorithm 
based on selected environmental variables. The algorithm was used to develop a 
spatially explicit predictive model, and hence generate predictive probability maps. The 
study was based on eleven fire events, each one ignited by lighting and none of the fires 
were suppressed. The fire events occurred in northwestern Ontario between 2001 and 
2003, having footprint areas ranging from approximately 58 to 4225 ha. For the sake of 
ease of analysis, the 11 fire events were categorized into three groups based on their size 
(Table 1).   
 
Table 1. The three categories of fire events.  

Fire event group  Fire footprint extent 
(ha) 

Fire footprint ID 
Large sized events Fire footprint extent  ≥ 3000 F01, F06, F08, and F10 
Small sized events Fire footprint extent  ≤ 100 F02, F03, and F09 
Medium sized 
events 

Extent > 100 and < 3000  F04, F05, F07, and F11 
 

The study used existing post-fire vegetation residual maps extracted from 
classified Ikonos images (Remmel & Perera, 2009). The classified Ikonos images were 
resampled into five spatial resolutions (R4, R8, R16, R32, and R64) based on a non-
overlapping block-majority filter for multiscale analysis. The use of RF for predictive 
model requires a response variable and explanatory variables. The response variable 
often incorporates the presence-absence data; hereafter described as residual and null-
residual patches respectively. However, the vast majority of ecological data that are 
available today are consisting of presence-only datasets (Zaniewski, Lehman, & Overton, 
2002). Yet, presence-only data are the most difficult element to integrate into statistical 
modeling. Additionally, models based on presence-only data do not provide a better 
performance (Pearce & Ferrier, 2000).  

In this study, a model based on presence-absence data is developed where the 
existing residual patches were considered as presence-data. However, information about 
the absence data is not readily available. Therefore, a computer simulation approach has 
been suggested to algorithmically generate null-residual patches. Yet, models designed 
based on presence-absence data can be affected by class imbalance (Evans & Cushman, 
2009). In order to develop a model based on presence-absence data, a simulation 
algorithm was initially developed to extract null-residual patches. The algorithm was 
also designed to randomly generate null-residual patches in which the size, shape and 
orientation of the null-residual patches mimic the residual patches and hence class 
imbalance would be avoided. The explanatory variables used for the prediction are 
topographic variables (slope, ruggedness index – RI, and elevation), vegetation cover 
type and fire break features (water, wetland, and non-vegetated areas). The variables 
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were obtained from different sources (digital elevation models and existing land cover 
maps), and were selected based on a prior ecological studies.  

The relationship between response (residual and null-residual) and explanatory 
variables was modeled using RF as implemented in R (R development core 2007). A 
model based on RF was applied because RF: 1) is a nonparametric and nonlinear 
classifier; 2) adds an additional layer of randomness; 3) does not over-fit, 4) has high 
predictive performance, and is computationally efficient in both training and 
classification (Breiman, 2001). RF also provides error statistics, which is indicative of 
model fit, but not necessarily the predictive performance of a model. We choose to 
perform an external cross-validation (hold-out) approach to provide a statistically 
independent measure of model performance. Given the 11 fire events, the data records 
from an individual fire event was held-out for testing while the records from the 
remaining fire events were used for training.  

A threshold-independent measure of model performance – receiver operating 
characteristics curves (ROC) - was used to assess the predictive power of the model. The 
ROC curve provides a graphical depiction of model’s discrimination ability over a range 
of threshold values (Pearce & Ferrier, 2000). However, comparing ROC curves directly 
from the plot has never been easy; a single index that describes the discrimination 
ability of a model is required (Zweig & Campbell, 1993). The area under the resulting 
ROC curve, which is referred to as AUC, is then considered as an indicator of model’s 
performance. The AUC provides a single measure of model’s ability to distinguish 
between residual and null-residual patches, independent of a specific threshold value.  
We produced ROC plots for each of the fire events using R; for each of the ROC curve 
the AUC value was also computed.  

 
Results 

 
The discrimination capability of the model for selected fire events (i.e., F01, F04, and 
F02; one for each category of Table 1) is graphically summarized in (Figure 1). A model 
that perfectly predicts the residual patches generates an ROC curve that follows the left 
axis and top of the plot, whilst a model with predictions that are no better than random 
produces an ROC curve that follows a 45° diagonal from the lower left corner to the 
upper right corner. A plot lying above and to the left of another plot indicates greater 
observed accuracy (Zweig & Campbell, 1993); such trend was evident in Figure 1 with 
changing grain sizes. The curves for F01 and F04 at R4 were also closer to the perfect 
discrimination. However, it is not easy to assess and compare the predictive accuracy 
directly from the ROC curves. The AUC provides a summary measure of model’s 
predictive accuracy; the ROC curve with the larger area is, on average, more accurate 
(Pearce & Ferrier, 2000). As a general rule, the AUC value includes: random guess (AUC 
= 0.5), low accuracy (0.5 ≥ AUC ≤ 0.7), reasonable accuracy (0.7 ≥ AUC ≤ 0.9), and high 
accuracy (AUC > 0.9) (Swets, 1988).   

The model had the highest discrimination accuracy with an index value of 0.995 
and 0.970 respectively for F01, and F04 (Table 2). Based on the rule of thumb set by 
Swets (1988), the RF model was evaluated as having reasonable to excellent 
discrimination ability for F01 and F04 across the gradient of scales; although low 
discrimination ability was exhibited for F04 at R32 and R64. The predictive model had 
also significantly higher discrimination ability (� < 0.05) for F01 and F04 across the 
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grain sizes considered. The results for F01 and F04 suggested that the occurrence and 
distribution of residual patches appears to be explained by the predictors incorporated 
in the model. 
 

 
 

Figure 1. ROC Curves for selected fire events. 
 

Table 2. AUC values for selected fire events. 
 

  Spatial resolutions 
  R4  R8  R16  R32  R64 
F01  0.995  0.886  0.816  0.749  0.793 
F04  0.970  0.902  0.771  0.688  0.643 
F02  0.629  0.537  0.507  0.507  0.648 

 
 However, the model’s predictive performance was poor and statistically not 
significant for F02. One possible reason for the low prediction accuracy at F02 could be 
attributed to insufficient sample size; F02 is the smallest fire event and had less than 10 
records (number of patches) in the evaluation dataset. Pearce, Ferrier, & Scotts (2001) 
found that the performance of a model for rarer species, with less than nine records in 
the evaluation dataset, was poorer than those with large number of records. Edwards, 
Cutler, Beard, & Gibson (2007) also noted that predictive models usually attain more 
accurate prediction with increased sample size. The results of our predictive probability 
maps also showed that the model was able to identify potential areas (unburnable areas, 
specifically wetlands) for residual patch occurrence. This supports a previous study on 
variable importance assessment where firebreak features (e.g., wetlands) were found to 
be the most informative predictors (Araya and Remmel, unpublished).   

 
Conclusions  

 
Pearce & Ferrier (2000) stated that a model with good discrimination ability is 

the one that correctly discriminate between presence and absence in the evaluation 
dataset, irrespective of the reliability of the predicted probabilities. Our results support 
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this view that a predictive model based on RF was flexible enough to identify the 
potential areas where residual patches are likely to occur. Specifically, high prediction 
probability is associated with the existences and abundance of firebreaks, particularly 
wetlands. For all the merits of RF in prediction, its interpretability is limited; it is a 
black-box and does not provide set of rules that are often obtained from standard 
classifications (e.g., CART) (Evans & Cushman, 2009). However, RF excels at 
identifying predictor variables and visually characterizing the relationship between 
predictor variables and predicted classes. Therefore, RF model was determined as a 
robust (ensemble) approach for learning complex and non-linear ecological 
relationship, and predicting residual patch distribution from presence-absence data, 
which is in agreement with previous studies undertaken based on RF models (e.g., 
Edwards et al., 2007; Evans & Cushman, 2009).  
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