
Loading Architecture for a Sensor Web Browser on Digital Earth

Chih-Yuan Huang Steve Liang

Geo-Sensor Web Laboratory, Department of Geomatics Engineering, University of Calgary
{huangcy, steve.liang}@ucalgary.ca

Abstract
The world-wide sensor web observes real world phenomena at a particular moment in time with
a large number of geo-referenced sensors. Sensor web needs a sensor web browser for accessing
distributed and heterogeneous sensor networks in a coherent frontend. The Digital Earth
provides a geo-referenced three-dimensional environment for intuitively browsing and
displaying sensor observations. However, the major challenge is to load the vast amount of
sensor observations from servers to a sensor web browser while minimizing the delay that a user
experiences. This research uses two techniques to address the challenge. First, the browser
caches transmitted data onto the local hard drive to reduce redundant internet bandwidth
consumption. Second, this work designs a loading architecture to decouple sensor data loading,
rendering, and browsing. The proposed scheme is implemented in the GeoCENS sensor web
browser. To the best of our knowledge, with the proposed loading architecture, GeoCENS is the
first Digital Earth-based sensor web browser.

Background and Relevance
The Digital Earth was envisioned in Gore’s 1998 speech1. The Digital Earth is a three-
dimensional visualization model of the physical Earth, which contains high resolution
imagery and digital elevation models. Users are able to intuitively interact with Digital
Earth by navigation features such as flying to places or floating above the surface. In
recent years more and more publicly-available Digital Earths are revealed, such as
ESRI’s ArcGIS Explorer2, NASA’s World Wind3, Microsoft’s Bing Map4, and Google
Earth5. One of the visions that Gore described is that people can access vast amount of
scientific information through the Digital Earth to help them understand real world.
Therefore, at the same time that Digital Earths were being developed, the deployments
of the world-wide sensor web were also put into practice for observing heterogeneous,
environmental phenomena. The sensor web concept originated at the NASA/Jet
Propulsion Laboratory in 1997 (Delin et al. 2005; Liang et al. 2005) for acquiring
environmental information by integrating massive spatially distributed consumer-
market sensors. The world-wide sensor web has been applied in a range of applications,
including: large-scale monitoring of the environment (Hart and Martinez 2006), civil
structures (Xu et al. 2004), roadways (Hsieh 2004), and animal habitats (Mainwaring et
al. 2002). Ranging from video camera networks that monitor real-time traffic,
matchbox-sized wireless sensor networks embedded in the environment for monitoring
habitats, sensor webs generate tremendous volumes of valuable observations, enabling
scientists to observe previously unobservable phenomena. Similar to how the World

1 http://www.isde5.org/al_gore_speech.htm
2 http://www.esri.com/software/arcgis/explorer/index.html
3 http://worldwind.arc.nasa.gov/java/
4 http://www.bing.com/maps/
5 http://www.google.com/earth/index.html

Wide Web needs an Internet browser for viewing web pages, the sensor web needs a
coherent frontend for accessing the distributed and heterogeneous sensor networks.
This kind of coherent frontend is called sensor web browser.

In order to achieve Gore’s Digital Earth and sensor web visions, an online Digital Earth-
based sensor web browser for users to browse, search, manage, and exchange sensor
data is needed. However, transmitting the vast amount of sensor readings from servers
to a sensor web browser with minimum delay is very challenging. Therefore, the goal of
this paper is to present a sensor web data loading architecture for addressing the
following two issues: (1) transmitting vast amount of sensor data and (2) minimizing the
delay time that user might experience. To address the first issue, efficient data loading
management utilizing a local cache is applied. To address the second issue, a loading
architecture that decouples loading and browsing, a speculation mechanism, and a
dynamic priority queue (Xhafa & Tonguz 2001) are applied. With the proposed scheme,
efficient sensor web data loading and good user experience are attained. The sensor data
used in this work are historical and can be represented as points on the Digital Earth.

Methodology

Issue 1: Transmitting Vast Amount of Sensor Data
To mitigate this issue, we can adopt strategies from Web browsers and how they are able
to minimize redundant transmissions. Web browsers cache data, which means they
store web page requests and associated responses as key-value pairs on the local disk in
order to reduce unnecessary and redundant transmissions, and to improve end-to-end
latency. Similarly, this work implements a caching strategy to reduce the unnecessary
transmission of sensor data in the sensor web. However, sensor web browsers’ requests
and sensor observations are different from web browsers’ requests and web pages. We
cannot simply manage sensor web requests and responses as key-value pairs in web
caches. A sensor web request can be interpreted as asking for sensor observations of a
certain phenomenon in a set of spatio-temporal cubes. The spatio-temporal cubes can
be distributed irregularly in space and time. An effective sensor web caching strategy
requires efficient management of these spatio-temporal cube requests. Therefore, we
develop a new spatio-temporal indexing structure, LOST-Tree (LOading Spatio-
Temporal indexing tree) to manage sensor data loading with a local cache.

A LOST-Tree manages sensor data loading of one phenomenon. A LOST-Tree consists
of two techniques. First, instead of indexing massive amounts of raw sensor data, a
LOST-Tree will index requests (i.e., spatio-temporal cubes). Because no actual data
stored in LOST-Tree, it is small and able to fit into memory for efficient processing.
Second, a LOST-Tree applies any two regular and aggregatable structures onto the
spatial and temporal domains for transforming irregular spatio-temporal cubes into
regular cubes. For instance, this work implements with a Quadtree (Finkel & Bentley
1974) and the Gregorian calendar. These two structures are integrated by using temporal
structure (i.e., the Gregorian calendar in this work) as main structure and embedding
spatial structure (i.e., Quadtree in this work) in nodes of temporal structure. In this way,
a record in LOST-Tree represents a spatio-temporal cube, which allows simple look-up
searches (rather than range query) for determining unloaded cubes. Records are
inserted into LOST-Tree only if the corresponding cubes have been loaded. Since both

structures are aggregatable, the more cubes are loaded, the fewer records remain.
Therefore, a LOST-Tree is scalable, light weight, and able to efficiently identify unloaded
potions in sensor web browser. By incorporating LOST-Trees into a sensor web browser,
previously loaded sensor data can be retrieved from the local cache. The end-to-end
latency can be reduced and the Internet bandwidth can be efficiently utilized on
transmitting the data that has not been loaded.

Issue 2: Minimizing the delay time that users experience
In order to minimize the delay users might experience when loading sensor web data,
we need to decouple data loading, rendering, and browsing. We implemented the
following performance improvement strategies in the GeoCENS sensor web browser
(Liang et al. 2010). (1) Checker: In order to reduce the requesting frequency, instead of
executing loading processes whenever the Digital Earth is moving, loading processes
start when the earth has stopped moving for more than a defined period of time (e.g.,
500 milliseconds). This follows the assumption that a user’s area of interest corresponds
to where the user stops moving the Digital Earth. (2) Wrapper: After a user requests a
spatio-temporal cube, a thread is trigged to determine the portions that are not available
in the local cache (by using a LOST-Tree). The wrapper also filters out the requests that
have been issued, and composes new loading tasks. (3) Loader: After the loading tasks
are created, these tasks are stored into a queue waiting for being sent to the servers. A
thread-pool with pre-defined number of threads polls these loading tasks from the
queue and issues requests based on the loading tasks to the servers. After the data are
transmitted to the browser, a thread is trigged to parse the data and store them in local
cache. (4) Poller: The checker, wrapper, and loader are for the data loading, and the
poller is for rendering. A timer runs periodically to check if user moves the Digital
Earth. If not, a thread will then be trigged to retrieve data from the local cache and
render the data on Digital Earth.

Besides applying the decoupling architecture, two additional mechanisms are
implemented for improving a user’s experience. They are speculation and dynamic
priority queue. Firstly, speculation means the system issues requests before a user issues
the requests. For instance, we expect users will browse the nearby regions around their
initial area of interest. Therefore, when a user requests a spatio-temporal cube, the
spatial component (e.g., bounding box) of the cube is then expanded. Secondly, users
are allowed to navigate freely within the Digital Earth environment. A user may decide
to move to other places before the previous loading tasks are digested. As a result, it is
important to prioritize the loading tasks dynamically. For example, if we manage the
loading tasks with a first-in-first-out (FIFO) strategy, new requests will not be executed
until the old requests are finished. In this case, users may feel slower system
performance because the system is background loading data they aren’t expecting.
Therefore, instead of following a FIFO queue, we apply a dynamic priority queue (Xhafa
& Tonguz 2001) to prioritize the loading tasks. Whenever a user moves the Digital Earth,
the priorities of loading tasks in the queue will be re-assigned with the distance between
the current area of interest and the tasks’ loading area. By using a dynamic priority
queue, loading tasks that are close to the current area of interest will be requested from
server first.

Conclusions
This paper presents a sensor web data loading architecture for constructing a sensor
web browser. This work applies a caching mechanism that eliminates redundant
transmissions and reduces end-to-end latency. Figure 1 depicts the end-to-end latency
before and after implementing local caching. The cache mechanism significantly
improves system performance. In addition, this work presents a loading architecture
that decouples data loading, rendering, and browsing in order to minimizing the delay
time that a user might experience while loading data from servers. Two additional
mechanisms also improve user experiences: speculation and dynamic priority queue.
With these mechanisms, users can efficiently and smoothly interact with a sensor web
browser while transmitting vast amount of sensor web data in the background. We
implemented the loading architecture in the GeoCENS sensor web browser (Liang et al.
2010). The GeoCENS sensor web browser can be accessed at http://www.geocens.ca.
Based on our testing experience, the proposed loading architecture successfully
addresses the challenges of integrating the Digital Earth and the world-wide sensor web.
To our best knowledge, GeoCENS is the first Digital Earth-based sensor web browser.

Figure 1. End-to-end latency before and after applying local cache

References
Delin, K.A., Jackson, S.P., Johnson, D.W., Burleigh, S.C., Woodrow, R.R., McAuley, J.M., Dohm,

J.M., Ip, F., Ferre, T.P.A., Rucher, D.F., & Baker, V.R. (2005) Environmental Studies
with the Sensor Web: Principles and Practice. Sensors, 5, 103-117.

Finkel, R. & Bentley, J.L. (1974) Quad Trees: A Data Structure for Retrieval on Composite Keys.
Acta Informatica, 4(1), 1–9.

Hart, J.K. & Martinez, K. (2006) Environmental Sensor Networks: A revolution in the earth
system science? Earth Science Reviews, 78, 177-191.

Hsieh, T.T., (2004) Using Sensor Networks for Highway and Traffic Applications. IEEE
Potentials, 23(2), 13-16.

Liang, S., Chang, D., Badger, J., Rezel, R., Chen, S., Huang, C.Y., & Li, R.Y. (2010) GeoCENS:
Geospatial Cyberinfrastructure for Environmental Sensing. In Sixth international
conference on Geographic Information Science, Zurich, Switzerland.

Liang, S.H.L., Croitoru, A., & Tao, C.V. (2005) A distributed geospatial infrastructure for Sensor
Web. Computers and Geosciences, 31(2), 221-231.

Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., & Anderson, J. (2002) Wireless Sensor
Networks for Habitat Monitoring. In 2002 ACM International Workshop on Wireless
Sensor Networks and Applications, Atlanta, United States.

Xhafa, A. & Tonguz, O.K. (2001) Dynamic Priority Queuing, Channel Bormwing, and First In
First Out Handoff Schemes: A Performance Comparison. IEEE Yehiculor Technology
Confirence Spring, 2, 951-955.

Xu, N., Rangwala, S., Chintalapudi, K.K., Ganesan, D., Broad, A., Govindan, R., & Estrin, D.
(2004) A Wireless Sensor Network for Structural Monitoring. In Conference on
Embeded Networked Sensor Systems, Baltimore, MD, United States.

