
Structure Across Scales: Hierarchical Decomposition of 
Spatiotemporal Data Using A Scale-Space Approach 

 
Arie Croitoru1 

1 Department of Earth and Atmospheric Sciences, University of Alberta, croitoru@ualberta.ca 
 

 
Abstract 

 
The ability to derive relationships between parts (granules) of a phenomenon that extends over 
space and time at different scales is essential in numerous application areas. Currently, the task 
of deriving a hierarchical decomposition of a spatiotemporal phenomenon relies on expert 
domain knowledge and is driven by a human operator.  With the increased availability of 
spatiotemporal data this approach is quickly becoming impractical, thus requiring the 
development of automated tools for spatiotemporal data mining over multiple granularities.  
This presentation will review the problem of partitioning a spatiotemporal phenomenon into 
salient granular parts over multiple scales, and will introduce a novel analytical approach for 
reconstructing a multi-scale hierarchical decomposition of a given spatiotemporal data set. 
 

Introduction  
 

Many phenomena in virtually all areas of natural sciences involve the study of change, 
and in particular, change in space and time. A primary reason for this interest in change 
is simple: change has a fundamental role in our perception and understanding of the 
world as it provides a systematic approach to the evolution of things in space and time. 
The identification and formalization of change patterns allows us to achieve what is 
often taken for granted: formalize rules, apply reasoning, and predict future behaviors of 
a given phenomenon. Consequently, the study of change in spatial data over time is 
essential in various areas, such as meteorology, geophysics, forestry, biology, and 
epidemiology. The study of change in all these disciplines is closely related to the study 
of events and processes. The description of change in terms of events (and processes) is 
natural to us – as humans we intuitively tend to perceive an activity as consisting of 
discrete events (Zacks and Taversky, 2001). Yet the way spatiotemporal data should be 
decomposed into salient events and processes is often unclear and difficult without 
expert a-priori knowledge. Furthermore, our perception of events and processes is 
directly influenced by the scale by which we perceive and analyze the data (Galton, 
2000), making the distinction between salient events and processes and the discovery of 
relations between them even more challenging. In light of this, the primary motivation 
of this work is to develop an analytical approach that would provide a hierarchical 
decomposition of spatiotemporal data into salient features (events and processes) while 
retrieving the hierarchical relations between the features using little or no a-priori 
knowledge. 
 

The proposed approach 
 

The proposed approach is based on a decomposition of spatiotemporal data using a 
scale-space representation of the data.  The construction of a scale-space representation 
is carried out by imbedding the signal f into a one parameter family of derived signals, in 



which the scale is controlled by a scale parameter t. More formally, given a signal 
f(x):ℜ→ℜ ∀x∈ℜN and a scale parameter t∈ℜ+, the scale space representation 
L:ℜ×ℜ+→ℜ is defined as L(x,t)=g(x,t)∗f(x), such that L(x,0)=f(x), and ∗ is the 
convolution operator (Lindeberg 1994). Typically, g(x,t) is taken as a Gaussian kernel 
(Witkin, 1983),(Lindeberg 1990) but in the general case g(x,t) can be any well-defined 
waveform (e.g. a wavelet). A primary advantage of the scale-space representation is its 
ability to provide an insight into the inherent inner structure of the data across different 
scales. By following inflection (extremum) points in the scale-space representation, and 
by using these inflection points as event/process indicators it is possible to generate a 
scale-space “sketch” in which the evolution trajectory of events and processes across 
scales becomes evident (Fig. 1(b)).  A formal representation of the scale-space inner 
structure can then be constructed by generating an interval tree from the scale-space 
sketch (Witkin, 1983). A detailed outline of the proposed scale-space approach can be 
found in Croitoru et al. (2006). Once created, the interval tree can be analyzed using the 
granularity tree formalization (Reitsma and Bittner, 2003). Here, several forms of 
analysis can take place in addition to the reconstruction of the event/process hierarchy 
(Fig. 1(c)), for instance: (a) pattern detection, in which a search for a particular subset of 
the granularity tree is carried out; (b) change detection, in which two granularity trees 
are compared and differences are indicated.   
 

 
 

 
(a) (b) (c) 

Figure 1: Hierarchical decomposition using scale space. (a) a tidal time series; (b) the 
corresponding scale-space sketch; (c) reconstruction of the granularity tree (each node 

represents an event or process). 
 

Results 
 
In order to evaluate the proposed approach two types of data were analyzed: 
meteorological (storms) and ocean data. In the case of meteorological data the 
evaluation of the proposed approach was carried out using satellite data from NASA-
GFSC’s GOES project (http://goes.gsfc.nasa.gov) that provides GOES-12 imagery. A 
total of five storms were collected, and for each storm four additional permutations were 
generated with a varying level of noise resulting in a set of 25 time series. Then, using 
the proposed approach, the data set was clustered in an attempt to recover the five 
storm clusters. In this case the proposed approach was able to correctly cluster the data 
and showed resistance to noise. In the case of ocean data wave height time series were 
analyzed in an attempt to detect and characterize a change in the measure phenomenon. 
The data was derived from GoMOOS - a buoy sensor network operating in the Gulf of 
Maine (http://www.gomoos.org). Using the proposed approach a granularity tree was 
derived and analyzed for change detection, resulting in the successful detection of 



change.  It should be noted that in the proposed approach change is detected across 
scales and not a single scale. 

 
Conclusions  

 
Recent years have been characterized by unprecedented amounts of spatiotemporal 
data. As we become more reliant on spatiotemporal data, the need to develop a sound 
analytical foundation for processing and inferring knowledge from such data becomes 
evident. In this work the problem of processing spatiotemporal data over multiple 
granularities was addressed. The proposed approach builds on scale-space theory in 
which multiple scales (instead of a single scale) are utilized, thus reducing the need for 
a-priori domain-specific knowledge in order to process the data. Furthermore, the 
proposed approach is specifically geared towards dealing with events and processes at 
multiple granularities, and allows reconstructing the inherent structural hierarchy of 
spatiotemporal phenomena. This work outlined and demonstrated how scale-space 
theory together with granularity trees can bused to mine spatiotemporal data, and 
eventually lead to the discovery of knowledge from such data. 
 
The work presented here could be expanded in several directions. First, the scale-space 
approach presented could be expanded to simultaneously consider multiple object 
attributes. This would result in a multi-dimensional granularity tree structure, and 
would enable the discovery of multi-dimensional event patterns across scale. Work in a 
two-dimensional space has recently been presented in the context of object analysis and 
detection (Siddiqi et al., 1999), but further expansion into multiple dimensions is 
needed.  A second area in which this work could be expanded is the development of 
modeling and analysis tools for intra and inter-object events and processes. The work 
presented here focuses on a single salient objects (i.e. a hurricane cloud mass) and 
assumes that the topology of the object remains unchanged (i.e. the cloud mass does not 
split, or merge with another storm’s cloud mass). However, various application areas, 
such as transportation, meteorology and homeland security, require the capacity to 
detect events and processes that include changes in the composition of an object or in 
the relation between objects over time, space, and scale (McIntosh and Yuan, 2005). In 
order to accommodate such a capacity change in topological relations over time should 
be incorporated, and temporal ordering rules should be applied (Peuquet, 1994). 
Potentially, this could be done through a conceptual neighborhood graph based 
approach (Cohn et al., 1997).  In addition, a framework for describing topological 
relations over multiple granularity levels should be developed. 
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